Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle

Edited by
Tim Bollerslev, Jeffrey R. Russell,
and Mark W. Watson

OXFORD UNIVERSITY PRESS
Contents

Introduction x

1 A History of Econometrics at the University of California, San Diego: A Personal Viewpoint 1
 Clive W. J. Granger
 1 Introduction 1
 2 The Founding Years: 1974–1984 1
 3 The Middle Years: 1985–1993 3
 4 The Changing Years: 1994–2003 4
 5 Graduate students 6
 6 Visitors 6
 7 Wives 8
 8 The Econometrics Research Project 8
 9 The UCSD Economics Department 8
 10 The way the world of econometrics has changed 8
 11 Visitors and students 9

2 The Long Run Shift-Share: Modeling the Sources of Metropolitan Sectoral Fluctuations 13
 N. Edward Coulson
 1 Introduction 13
 2 A general model and some specializations 14
 3 Data and evidence 21
 4 Summary and conclusions 33

3 The Evolution of National and Regional Factors in US Housing Construction 35
 James H. Stock and Mark W. Watson
 1 Introduction 35
 2 The state building permits data set 38
 3 The DFM-SV model 45
Contents

4 Empirical results 49
5 Discussion and conclusions 60

4 Modeling UK Inflation Uncertainty, 1958–2006
Gianna Boero, Jeremy Smith, and Kenneth F. Wallis

1 Introduction 62
2 UK inflation and the policy environment ... 63
3 Re-estimating the original ARCH model ... 66
4 The nonstationary behavior of UK inflation 69
5 Measures of inflation forecast uncertainty 73
6 Uncertainty and the level of inflation 77
7 Conclusion 78

5 Macroeconomics and ARCH
James D. Hamilton

1 Introduction 79
2 GARCH and inference about the mean 81
3 Application 1: Measuring market expectations of what the Federal Reserve is going to do next 87
4 Application 2: Using the Taylor Rule to summarize changes in Federal Reserve policy 91
5 Conclusions 95

6 Macroeconomic Volatility and Stock Market Volatility, World-Wide
Francis X. Diebold and Kamil Yilmaz

1 Introduction 97
2 Data .. 99
3 Empirical results 100
4 Variations and extensions 105
5 Concluding remark 109

7 Measuring Downside Risk – Realized Semivariance
Ole E. Barndorff-Nielsen, Silja Kinnebrock, and Neil Shephard

1 Introduction 117
2 Econometric theory 122
3 More empirical work 128
4 Additional remarks 131
5 Conclusions 133
8 Glossary to ARCH (GARCH) 137
Tim Bollerslev

9 An Automatic Test of Super Exogeneity 164
David F. Hendry and Carlos Santos

1 Introduction 164
2 Detectable shifts 166
3 Super exogeneity in a regression context 170
4 Impulse saturation 173
5 Null rejection frequency of the impulse-based test 175
6 Potency at stage 1 179
7 Super-exogeneity failure 181
8 Co-breaking based tests 186
9 Simulating the potencies of the automatic super-exogeneity test 186
10 Testing super exogeneity in UK money demand 190
11 Conclusion 192

10 Generalized Forecast Errors, a Change of Measure, and Forecast Optimality 194
Andrew J. Patton and Allan Timmermann

1 Introduction 194
2 Testable implications under general loss functions 196
3 Properties under a change of measure 200
4 Numerical example and an application to US inflation 202
5 Conclusion 209

11 Multivariate Autocontours for Specification Testing in Multivariate GARCH Models 213
Gloria González-Rivera and Emre Yoldas

1 Introduction 213
2 Testing methodology 215
3 Monte Carlo simulations 219
4 Empirical applications 224
5 Concluding remarks 230

12 Modeling Autoregressive Conditional Skewness and Kurtosis with Multi-Quantile CAViaR 231
Halbert White, Tae-Hwan Kim, and Simone Manganelli

1 Introduction 231
2 The MQ-CAViaR process and model 232
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MQ-CAViaR estimation: Consistency and asymptotic normality</td>
<td>234</td>
</tr>
<tr>
<td>4</td>
<td>Consistent covariance matrix estimation</td>
<td>237</td>
</tr>
<tr>
<td>5</td>
<td>Quantile-based measures of conditional skewness and kurtosis</td>
<td>238</td>
</tr>
<tr>
<td>6</td>
<td>Application and simulation</td>
<td>239</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>246</td>
</tr>
<tr>
<td>13</td>
<td>Volatility Regimes and Global Equity Returns</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Luis Catão and Allan Timmermann</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Econometric methodology</td>
<td>261</td>
</tr>
<tr>
<td>2</td>
<td>Data</td>
<td>265</td>
</tr>
<tr>
<td>3</td>
<td>Global stock return dynamics</td>
<td>267</td>
</tr>
<tr>
<td>4</td>
<td>Variance decompositions</td>
<td>275</td>
</tr>
<tr>
<td>5</td>
<td>Economic interpretation: Oil, money, and tech shocks</td>
<td>281</td>
</tr>
<tr>
<td>6</td>
<td>Implications for global portfolio allocation</td>
<td>287</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>293</td>
</tr>
<tr>
<td>14</td>
<td>A Multifactor, Nonlinear, Continuous-Time Model of Interest Rate Volatility</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>Jacob Boudoukh, Christopher Downing, Matthew Richardson, Richard Stanton, and Robert F. Whitelaw</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>296</td>
</tr>
<tr>
<td>2</td>
<td>The stochastic behavior of interest rates: Some evidence</td>
<td>298</td>
</tr>
<tr>
<td>3</td>
<td>Estimation of a continuous-time multifactor diffusion process</td>
<td>307</td>
</tr>
<tr>
<td>4</td>
<td>A generalized Longstaff and Schwartz (1992) model</td>
<td>313</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>321</td>
</tr>
<tr>
<td>15</td>
<td>Estimating the Implied Risk-Neutral Density for the US Market Portfolio</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Stephen Figlewski</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>2</td>
<td>Review of the literature</td>
<td>325</td>
</tr>
<tr>
<td>3</td>
<td>Extracting the risk-neutral density from options prices, in theory</td>
<td>329</td>
</tr>
<tr>
<td>4</td>
<td>Extracting a risk-neutral density from options market prices, in practice</td>
<td>331</td>
</tr>
<tr>
<td>5</td>
<td>Adding tails to the risk-neutral density</td>
<td>342</td>
</tr>
<tr>
<td>6</td>
<td>Estimating the risk-neutral density for the S&P 500 from S&P 500 index options</td>
<td>345</td>
</tr>
<tr>
<td>7</td>
<td>Concluding comments</td>
<td>352</td>
</tr>
</tbody>
</table>
Contents

16 A New Model for Limit Order Book Dynamics
Jeffrey R. Russell and Taejin Kim

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>354</td>
</tr>
<tr>
<td>2 The model</td>
<td>356</td>
</tr>
<tr>
<td>3 Model estimation</td>
<td>358</td>
</tr>
<tr>
<td>4 Data</td>
<td>358</td>
</tr>
<tr>
<td>5 Results</td>
<td>360</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>364</td>
</tr>
</tbody>
</table>

Bibliography

Index

401