Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction to life insurance</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Life insurance and annuity contracts</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Traditional insurance contracts</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Modern insurance contracts</td>
<td>6</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Distribution methods</td>
<td>8</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Underwriting</td>
<td>8</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Premiums</td>
<td>10</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Life annuities</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Other insurance contracts</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Pension benefits</td>
<td>12</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Defined benefit and defined contribution pensions</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Defined benefit pension design</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Mutual and proprietary insurers</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Typical problems</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Notes and further reading</td>
<td>15</td>
</tr>
<tr>
<td>1.9</td>
<td>Exercises</td>
<td>15</td>
</tr>
</tbody>
</table>

Survival models

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Summary</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>The future lifetime random variable</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>The force of mortality</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Actuarial notation</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Mean and standard deviation of T_x</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Curtate future lifetime</td>
<td>32</td>
</tr>
<tr>
<td>2.6.1</td>
<td>K_x and e_x</td>
<td>32</td>
</tr>
</tbody>
</table>
Contents

2.6.2 The complete and curtate expected future lifetimes, \overline{e}_x and e_x 34

2.7 Notes and further reading 35

2.8 Exercises 36

3 **Life tables and selection** 41

3.1 Summary 41

3.2 Life tables 41

3.3 Fractional age assumptions 44

3.3.1 Uniform distribution of deaths 44

3.3.2 Constant force of mortality 48

3.4 National life tables 49

3.5 Survival models for life insurance policyholders 52

3.6 Life insurance underwriting 54

3.7 Select and ultimate survival models 56

3.8 Notation and formulae for select survival models 58

3.9 Select life tables 59

3.10 Notes and further reading 67

3.11 Exercises 67

4 **Insurance benefits** 73

4.1 Summary 73

4.2 Introduction 73

4.3 Assumptions 74

4.4 Valuation of insurance benefits 75

4.4.1 Whole life insurance: the continuous case, \overline{A}_x 75

4.4.2 Whole life insurance: the annual case, A_x 78

4.4.3 Whole life insurance: the 1/mthly case, $A^{(m)}_x$ 79

4.4.4 Recursions 81

4.4.5 Term insurance 86

4.4.6 Pure endowment 88

4.4.7 Endowment insurance 89

4.4.8 Deferred insurance benefits 91

4.5 Relating \overline{A}_x, A_x and $A^{(m)}_x$ 93

4.5.1 Using the uniform distribution of deaths assumption 93

4.5.2 Using the claims acceleration approach 95

4.6 Variable insurance benefits 96

4.7 Functions for select lives 101

4.8 Notes and further reading 101

4.9 Exercises 102

5 **Annuities** 107

5.1 Summary 107

5.2 Introduction 107
5.3 Review of annuities-certain
5.4 Annual life annuities
 5.4.1 Whole life annuity-due
 5.4.2 Term annuity-due
 5.4.3 Whole life immediate annuity
 5.4.4 Term immediate annuity
5.5 Annuities payable continuously
 5.5.1 Whole life continuous annuity
 5.5.2 Term continuous annuity
5.6 Annuities payable \(m \) times per year
 5.6.1 Introduction
 5.6.2 Life annuities payable \(m \) times a year
 5.6.3 Term annuities payable \(m \) times a year
5.7 Comparison of annuities by payment frequency
5.8 Deferred annuities
5.9 Guaranteed annuities
5.10 Increasing annuities
 5.10.1 Arithmetically increasing annuities
 5.10.2 Geometrically increasing annuities
5.11 Evaluating annuity functions
 5.11.1 Recursions
 5.11.2 Applying the UDD assumption
 5.11.3 Woolhouse's formula
5.12 Numerical illustrations
5.13 Functions for select lives
5.14 Notes and further reading
5.15 Exercises

6 Premium calculation
6.1 Summary
6.2 Preliminaries
6.3 Assumptions
6.4 The present value of future loss random variable
6.5 The equivalence principle
 6.5.1 Net premiums
6.6 Gross premium calculation
6.7 Profit
6.8 The portfolio percentile premium principle
6.9 Extra risks
 6.9.1 Age rating
 6.9.2 Constant addition to \(\mu_x \)
 6.9.3 Constant multiple of mortality rates
6.10 Notes and further reading 169
6.11 Exercises 170

7 Policy values 176
7.1 Summary 176
7.2 Assumptions 176
7.3 Policies with annual cash flows 176
 7.3.1 The future loss random variable 176
 7.3.2 Policy values for policies with annual cash flows 182
 7.3.3 Recursive formulae for policy values 191
 7.3.4 Annual profit 196
 7.3.5 Asset shares 200
7.4 Policy values for policies with cash flows at discrete intervals other than annually 203
 7.4.1 Recursions 204
 7.4.2 Valuation between premium dates 205
7.5 Policy values with continuous cash flows 207
 7.5.1 Thiele’s differential equation 207
 7.5.2 Numerical solution of Thiele’s differential equation 211
7.6 Policy alterations 213
7.7 Retrospective policy value 219
7.8 Negative policy values 220
7.9 Notes and further reading 220
7.10 Exercises 220

8 Multiple state models 230
8.1 Summary 230
8.2 Examples of multiple state models 230
 8.2.1 The alive–dead model 230
 8.2.2 Term insurance with increased benefit on accidental death 232
 8.2.3 The permanent disability model 232
 8.2.4 The disability income insurance model 233
 8.2.5 The joint life and last survivor model 234
8.3 Assumptions and notation 235
8.4 Formulae for probabilities 239
 8.4.1 Kolmogorov’s forward equations 242
8.5 Numerical evaluation of probabilities 243
8.6 Premiums 247
8.7 Policy values and Thiele’s differential equation 250
 8.7.1 The disability income model 251
 8.7.2 Thiele’s differential equation – the general case 255
Contents

8.8 Multiple decrement models 256
8.9 Joint life and last survivor benefits 261
8.9.1 The model and assumptions 261
8.9.2 Joint life and last survivor probabilities 262
8.9.3 Joint life and last survivor annuity and insurance functions 264
8.9.4 An important special case: independent survival models 270
8.10 Transitions at specified ages 274
8.11 Notes and further reading 278
8.12 Exercises 279

9 Pension mathematics 290
9.1 Summary 290
9.2 Introduction 290
9.3 The salary scale function 291
9.4 Setting the DC contribution 294
9.5 The service table 297
9.6 Valuation of benefits 306
9.6.1 Final salary plans 306
9.6.2 Career average earnings plans 312
9.7 Funding plans 314
9.8 Notes and further reading 319
9.9 Exercises 319

10 Interest rate risk 326
10.1 Summary 326
10.2 The yield curve 326
10.3 Valuation of insurances and life annuities 330
10.3.1 Replicating the cash flows of a traditional non-participating product 332
10.4 Diversifiable and non-diversifiable risk 334
10.4.1 Diversifiable mortality risk 335
10.4.2 Non-diversifiable risk 336
10.5 Monte Carlo simulation 342
10.6 Notes and further reading 348
10.7 Exercises 348

11 Emerging costs for traditional life insurance 353
11.1 Summary 353
11.2 Profit testing for traditional life insurance 353
11.2.1 The net cash flows for a policy 353
11.2.2 Reserves 355
11.3 Profit measures 358
11.4 A further example of a profit test 360
11.5 Notes and further reading 369
11.6 Exercises 369

12 Emerging costs for equity-linked insurance 374
12.1 Summary 374
12.2 Equity-linked insurance 374
12.3 Deterministic profit testing for equity-linked insurance 375
12.4 Stochastic profit testing 384
12.5 Stochastic pricing 388
12.6 Stochastic reserving 390
 12.6.1 Reserving for policies with non-diversifiable risk 390
 12.6.2 Quantile reserving 391
 12.6.3 CTE reserving 393
 12.6.4 Comments on reserving 394
12.7 Notes and further reading 395
12.8 Exercises 395

13 Option pricing 401
13.1 Summary 401
13.2 Introduction 401
13.3 The ‘no arbitrage’ assumption 402
13.4 Options 403
13.5 The binomial option pricing model 405
 13.5.1 Assumptions 405
 13.5.2 Pricing over a single time period 405
 13.5.3 Pricing over two time periods 410
 13.5.4 Summary of the binomial model option pricing technique 413
13.6 The Black–Scholes–Merton model 414
 13.6.1 The model 414
 13.6.2 The Black–Scholes–Merton option pricing formula 416
13.7 Notes and further reading 427
13.8 Exercises 428

14 Embedded options 431
14.1 Summary 431
14.2 Introduction 431
14.3 Guaranteed minimum maturity benefit 433
 14.3.1 Pricing 433
 14.3.2 Reserving 436
14.4 Guaranteed minimum death benefit 438
 14.4.1 Pricing 438
 14.4.2 Reserving 440
Contents

14.5 Pricing methods for embedded options 444
14.6 Risk management 447
14.7 Emerging costs 449
14.8 Notes and further reading 457
14.9 Exercises 458

A Probability theory 464
A.1 Probability distributions 464
A.1.1 Binomial distribution 464
A.1.2 Uniform distribution 464
A.1.3 Normal distribution 465
A.1.4 Lognormal distribution 466
A.2 The central limit theorem 469
A.3 Functions of a random variable 469
A.3.1 Discrete random variables 470
A.3.2 Continuous random variables 470
A.3.3 Mixed random variables 471
A.4 Conditional expectation and conditional variance 472
A.5 Notes and further reading 473

B Numerical techniques 474
B.1 Numerical integration 474
B.1.1 The trapezium rule 474
B.1.2 Repeated Simpson’s rule 476
B.1.3 Integrals over an infinite interval 477
B.2 Woolhouse’s formula 478
B.3 Notes and further reading 479

C Simulation 480
C.1 The inverse transform method 480
C.2 Simulation from a normal distribution 481
C.2.1 The Box–Muller method 482
C.2.2 The polar method 482
C.3 Notes and further reading 482

References 483
Author index 487
Index 488