Arbitrage Theory in Continuous Time

THIRD EDITION

TOMAS BJÖRK
Stockholm School of Economics

OXFORD UNIVERSITY PRESS
CONTENTS

1 Introduction .. 1
 1.1 Problem Formulation 1

2 The Binomial Model .. 5
 2.1 The One Period Model 5
 2.1.1 Model Description 5
 2.1.2 Portfolios and Arbitrage 6
 2.1.3 Contingent Claims 9
 2.1.4 Risk Neutral Valuation 11
 2.2 The Multiperiod Model 15
 2.2.1 Portfolios and Arbitrage 15
 2.2.2 Contingent Claims 17
 2.3 Exercises ... 25
 2.4 Notes .. 25

3 A More General One Period Model 26
 3.1 The Model ... 26
 3.2 Absence of Arbitrage 27
 3.3 Martingale Measures 32
 3.4 Martingale Pricing 34
 3.5 Completeness ... 35
 3.6 Stochastic Discount Factors 38
 3.7 Exercises ... 39

4 Stochastic Integrals .. 40
 4.1 Introduction ... 40
 4.2 Information .. 42
 4.3 Stochastic Integrals 44
 4.4 Martingales .. 46
 4.5 Stochastic Calculus and the Itô Formula 49
 4.6 Examples ... 54
 4.7 The Multidimensional Itô Formula 57
 4.8 Correlated Wiener Processes 59
 4.9 Exercises ... 63
 4.10 Notes .. 65

5 Differential Equations 66
 5.1 Stochastic Differential Equations 66
 5.2 Geometric Brownian Motion 67
 5.3 The Linear SDE ... 70
 5.4 The Infinitesimal Operator 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 Partial Differential Equations</td>
<td>72</td>
</tr>
<tr>
<td>5.6 The Kolmogorov Equations</td>
<td>76</td>
</tr>
<tr>
<td>5.7 Exercises</td>
<td>79</td>
</tr>
<tr>
<td>5.8 Notes</td>
<td>83</td>
</tr>
<tr>
<td>6 Portfolio Dynamics</td>
<td>84</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>84</td>
</tr>
<tr>
<td>6.2 Self-financing Portfolios</td>
<td>87</td>
</tr>
<tr>
<td>6.3 Dividends</td>
<td>89</td>
</tr>
<tr>
<td>6.4 Exercises</td>
<td>91</td>
</tr>
<tr>
<td>7 Arbitrage Pricing</td>
<td>92</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>92</td>
</tr>
<tr>
<td>7.2 Contingent Claims and Arbitrage</td>
<td>93</td>
</tr>
<tr>
<td>7.3 The Black–Scholes Equation</td>
<td>98</td>
</tr>
<tr>
<td>7.4 Risk Neutral Valuation</td>
<td>102</td>
</tr>
<tr>
<td>7.5 The Black–Scholes Formula</td>
<td>104</td>
</tr>
<tr>
<td>7.6 Options on Futures</td>
<td>106</td>
</tr>
<tr>
<td>7.6.1 Forward Contracts</td>
<td>106</td>
</tr>
<tr>
<td>7.6.2 Futures Contracts and the Black Formula</td>
<td>107</td>
</tr>
<tr>
<td>7.7 Volatility</td>
<td>108</td>
</tr>
<tr>
<td>7.7.1 Historic Volatility</td>
<td>109</td>
</tr>
<tr>
<td>7.7.2 Implied Volatility</td>
<td>110</td>
</tr>
<tr>
<td>7.8 American Options</td>
<td>110</td>
</tr>
<tr>
<td>7.9 Exercises</td>
<td>112</td>
</tr>
<tr>
<td>7.10 Notes</td>
<td>114</td>
</tr>
<tr>
<td>8 Completeness and Hedging</td>
<td>115</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>8.2 Completeness in the Black–Scholes Model</td>
<td>116</td>
</tr>
<tr>
<td>8.3 Completeness—Absence of Arbitrage</td>
<td>121</td>
</tr>
<tr>
<td>8.4 Exercises</td>
<td>122</td>
</tr>
<tr>
<td>8.5 Notes</td>
<td>124</td>
</tr>
<tr>
<td>9 Parity Relations and Delta Hedging</td>
<td>125</td>
</tr>
<tr>
<td>9.1 Parity Relations</td>
<td>125</td>
</tr>
<tr>
<td>9.2 The Greeks</td>
<td>127</td>
</tr>
<tr>
<td>9.3 Delta and Gamma Hedging</td>
<td>130</td>
</tr>
<tr>
<td>9.4 Exercises</td>
<td>134</td>
</tr>
<tr>
<td>10 The Martingale Approach to Arbitrage Theory*</td>
<td>137</td>
</tr>
<tr>
<td>10.1 The Case with Zero Interest Rate</td>
<td>137</td>
</tr>
<tr>
<td>10.2 Absence of Arbitrage</td>
<td>140</td>
</tr>
<tr>
<td>10.2.1 A Rough Sketch of the Proof</td>
<td>141</td>
</tr>
<tr>
<td>10.2.2 Precise Results</td>
<td>144</td>
</tr>
<tr>
<td>10.3 The General Case</td>
<td>146</td>
</tr>
</tbody>
</table>
CONTENTS

10.4 Completeness 149
10.5 Martingale Pricing 151
10.6 Stochastic Discount Factors 153
10.7 Summary for the Working Economist 154
10.8 Notes 156

11 The Mathematics of the Martingale Approach*
11.1 Stochastic Integral Representations 158
11.2 The Girsanov Theorem: Heuristics 162
11.3 The Girsanov Theorem 164
11.4 The Converse of the Girsanov Theorem 168
11.5 Girsanov Transformations and Stochastic Differentials 168
11.6 Maximum Likelihood Estimation 169
11.7 Exercises 171
11.8 Notes 172

12 Black–Scholes from a Martingale Point of View*
12.1 Absence of Arbitrage 173
12.2 Pricing 175
12.3 Completeness 176

13 Multidimensional Models: Classical Approach 179
13.1 Introduction 179
13.2 Pricing 181
13.3 Risk Neutral Valuation 187
13.4 Reducing the State Space 188
13.5 Hedging 192
13.6 Exercises 195

14 Multidimensional Models: Martingale Approach*
14.1 Absence of Arbitrage 196
14.2 Completeness 199
14.3 Hedging 200
14.4 Pricing 202
14.5 Markovian Models and PDEs 203
14.6 Market Prices of Risk 204
14.7 Stochastic Discount Factors 205
14.8 The Hansen–Jagannathan Bounds 205
14.9 Exercises 208
14.10 Notes 208

15 Incomplete Markets 209
15.1 Introduction 209
15.2 A Scalar Nonpriced Underlying Asset 209
15.3 The Multidimensional Case 218
15.4 A Stochastic Short Rate 222
CONTENTS

15.5 The Martingale Approach* 223
15.6 Summing Up 224
15.7 Exercises 227
15.8 Notes 228

16 Dividends 229
16.1 Discrete Dividends 229
 16.1.1 Price Dynamics and Dividend Structure 229
 16.1.2 Pricing Contingent Claims 230
16.2 Continuous Dividends 235
 16.2.1 Continuous Dividend Yield 236
 16.2.2 The General Case 239
16.3 The Martingale Approach* 241
 16.3.1 The Bank Account as Numeraire 242
 16.3.2 An Arbitrary Numeraire 243
16.4 Exercises 246

17 Currency Derivatives 247
17.1 Pure Currency Contracts 247
17.2 Domestic and Foreign Equity Markets 250
17.3 Domestic and Foreign Market Prices of Risk 256
17.4 The Martingale Approach* 260
17.5 Exercises 263
17.6 Notes 264

18 Barrier Options 265
18.1 Mathematical Background 265
18.2 Out Contracts 267
 18.2.1 Down-and-out Contracts 267
 18.2.2 Up-and-out Contracts 271
 18.2.3 Examples 272
18.3 In Contracts 276
18.4 Ladders 278
18.5 Lookbacks 279
18.6 Exercises 281
18.7 Notes 281

19 Stochastic Optimal Control 282
19.1 An Example 282
19.2 The Formal Problem 283
19.3 The Hamilton–Jacobi–Bellman Equation 286
19.4 Handling the HJB Equation 294
19.5 The Linear Regulator 295
19.6 Optimal Consumption and Investment 297
 19.6.1 A Generalization 297
 19.6.2 Optimal Consumption 299
CONTENTS

22.2 Interest Rates
 22.2.1 Definitions
 22.2.2 Relations between $df(t, T)$, $dp(t, T)$ and $dr(t)$
 22.2.3 An Alternative View of the Money Account

22.3 Coupon Bonds, Swaps and Yields
 22.3.1 Fixed Coupon Bonds
 22.3.2 Floating Rate Bonds
 22.3.3 Interest Rate Swaps
 22.3.4 Yield and Duration

22.4 Exercises

22.5 Notes

23 Short Rate Models
 23.1 Generalities
 23.2 The Term Structure Equation
 23.3 Exercises
 23.4 Notes

24 Martingale Models for the Short Rate
 24.1 Q-dynamics
 24.2 Inversion of the Yield Curve
 24.3 Affine Term Structures
 24.3.1 Definition and Existence
 24.3.2 A Probabilistic Discussion
 24.4 Some Standard Models
 24.4.1 The Vasicek Model
 24.4.2 The Ho–Lee Model
 24.4.3 The CIR Model
 24.4.4 The Hull–White Model
 24.5 Exercises
 24.6 Notes

25 Forward Rate Models
 25.1 The Heath–Jarrow–Morton Framework
 25.2 Martingale Modeling
 25.3 The Musiela Parameterization
 25.4 Exercises
 25.5 Notes

26 Change of Numeraire*
 26.1 Introduction
 26.2 Generalities
 26.3 Changing the Numeraire
 26.4 Forward Measures
 26.4.1 Using the T-bond as Numeraire
 26.4.2 An Expectation Hypothesis
CONTENTS

A.7 Hilbert Spaces 470
A.8 Sigma-Algebras and Generators 473
A.9 Product Measures 476
A.10 The Lebesgue Integral 477
A.11 The Radon–Nikodym Theorem 478
A.12 Exercises 482
A.13 Notes 483

B Probability Theory* 484
B.1 Random Variables and Processes 484
B.2 Partitions and Information 487
B.3 Sigma-algebras and Information 489
B.4 Independence 492
B.5 Conditional Expectations 493
B.6 Equivalent Probability Measures 500
B.7 Exercises 502
B.8 Notes 503

C Martingales and Stopping Times* 504
C.1 Martingales 504
C.2 Discrete Stochastic Integrals 507
C.3 Likelihood Processes 508
C.4 Stopping Times 509
C.5 Exercises 512

References 514

Index 521