Design Reuse in Product Development Modeling, Analysis and Optimization

S K Ong
National University of Singapore

Q L Xu
Nanyang Technological University, Singapore

Andrew Y C Nee
National University of Singapore
Contents

Preface v

1 Introduction 1
 1.1 Design Reuse – What and Why 2
 1.1.1 Types of design reuse 2
 1.1.2 The importance of design reuse 3
 1.2 Product Conceptual Design 6
 1.2.1 Product family design 8
 1.3 Major Issues in Design Reuse 10
 1.3.1 Design reuse process 11
 1.3.2 Product information modeling 12
 1.3.3 Product information analysis 13
 1.3.4 Design synthesis 13
 1.3.5 Solution evaluation 14
 1.4 Engineering Design Reuse Applications 15
 1.4.1 Design reuse in software engineering 15
 1.4.2 Design reuse in mechanical and electro-mechanical engineering 18
 1.4.3 Design reuse in manufacturing 20
 1.5 Barriers to Design Reuse 22
 1.6 Summary 24

2 Design Reuse Systems and Enabling Tools 27
 2.1 Engineering Design Reuse Approaches 27
 2.1.1 Case-based reasoning 28
 2.1.2 Catalog-based design 29
 2.1.3 Modular design 31
 2.1.4 Adaptable design 33
 2.1.5 Expert systems 35
 2.1.6 Innovative design using TRIZ 37
 2.2 Reasoning in Design Reuse 38
 2.2.1 Machine learning 38
2.2.2 Data mining 40
2.2.3 Design structure matrix 41
2.2.4 Artificial neural networks 43
2.2.5 Genetic algorithms 46
2.2.6 Agent-based method 47
2.3 Summary 49

3 Product Information Modeling 51
3.1 Data, Information and Knowledge 51
3.2 Information Modeling – State-Of-The-Art Review 53
 3.2.1 Content of information model 53
 3.2.2 Modeling languages 58
 3.2.3 Taxonomies 61
 3.2.4 Database system and web-based environment 63
3.3 Function-Based Product Information Model 66
 3.3.1 A multiple facet product information model 66
 3.3.2 Representation of function using key element vector 69
 3.3.3 Function taxonomies 71
 3.3.4 An illustrative example 74
3.4 Summary 78

4 Design of Product Platform 81
4.1 Role of Product Platform 81
4.2 Product Platform and Product Family Design 83
 4.2.1 A top-down perspective 84
 4.2.2 A bottom-up perspective 85
4.3 Computational Tools for Product Architecture Building 87
 4.3.1 QFD-based approach 87
 4.3.2 DSM-based approach 88
 4.3.3 Heuristic and quantitative approaches 90
4.4 Product Architecture Building Using Self-Organizing Map 91
 4.4.1 Introduction of SOM 91
 4.4.2 Function clustering based on SOM 94
 4.4.3 A case study 99
 4.4.4 Evaluation of the SOM method 103
4.5 Other Relevant Issues in Product Platform Design 106
 4.5.1 Extraction of KCs as performance criteria 107
 4.5.2 Formation of component catalog 109
 4.5.3 Establishment of mapping route using correlation matrices 109
4.6 Summary 111
5 Optimization in Product Design 113
 5.1 Introduction 113
 5.1.1 Weighted sum method 116
 5.1.2 Goal programming 117
 5.1.3 Multi-level programming/rank ordering 118
 5.1.4 Genetic algorithms 118
 5.2 Automated Design Synthesis 121
 5.2.1 Configuration design 121
 5.2.2 Design synthesis techniques 122
 5.3 Multi-objective Struggle Genetic Algorithm Design Synthesis 128
 5.3.1 Problem formulation 128
 5.3.2 The MOSGA algorithm 131
 5.3.3 Implementation of MOSGA in product configuration design 133
 5.3.4 Precautions and limitations 139
 5.4 Post-optimal Solution Selection 140
 5.5 A Case Study 142
 5.5.1 Experience-based design 144
 5.5.2 Product design using the design reuse approach 146
 5.5.3 Comparison of the two methods 151
 5.6 Summary 151

6 Cost Estimation in Product Development 153
 6.1 Introduction 153
 6.2 Product Development Cost 155
 6.2.1 Cost structure 155
 6.2.2 Cost modeling techniques 158
 6.3 Cost Estimation in Product Family Development 166
 6.3.1 Commonality index 167
 6.4 An Empirical Cost Model for Design-Reuse 169
 6.4.1 Fixed cost 170
 6.4.2 Development cost 171
 6.4.3 Component cost 171
 6.5 Summary 173

7 Product Performance Evaluation 175
 7.1 Introduction 175
 7.1.1 Relating performance to design parameters 175
 7.1.2 Aggregating performance criteria 177
 7.2 Robust Design 178
 7.3 The Information Content Assessment Method 182
 7.3.1 Background – information axiom and information content 183
 7.3.2 The information content assessment process 186
7.3.3 Establishing system range from existing products 187
7.3.4 Assessing information content 193
7.3.5 Precautions and limitations 197
7.3.6 A case study 198
7.4 Summary 203

8 A Product Family Design Reuse Methodology 205
8.1 Introduction 205
 8.1.1 Scale-based approach 206
 8.1.2 Model-based approach 211
 8.1.3 Graph-based approach 211
 8.1.4 Module-based approach 211
8.2 An Integrated Design Reuse Process Model 212
 8.2.1 Product information modeling 213
 8.2.2 Knowledge extraction 214
 8.2.3 Design synthesis and evaluation 216
8.3 A Web-Based Product Family Design Reuse System 216
8.4 Design of Cellular Phone Product Family 222
 8.4.1 Settings 222
 8.4.2 Results 226
 8.4.3 Analysis 228
8.5 Design of TV Receiver Circuits 229
 8.5.1 Settings 229
 8.5.2 Solution generation and results 232
 8.5.3 Comparison 233
8.6 Summary 234

9 Design Reuse for Embodiment and Detailed Design 237
9.1 Introduction 237
9.2 Online Design Reuse System 239
 9.2.1 System architecture 239
 9.2.2 Product information representation 241
9.3 Embodiment Design 241
 9.3.1 Product case retrieval method 242
 9.3.2 Optimal search for alternative solution 247
 9.3.3 Exhaustive search 254
 9.3.4 GA-based search 255
 9.3.5 Solution generation in washing machine design 260
9.4 Detailed Design 263
 9.4.1 Architecture of the detailed design transformation 263
 9.4.2 Feature-based parametric modeling 265
 9.4.3 Product family and variant method 266
Contents

9.4.4 Operation of detailed design reuse 267
9.4.5 System implementation 271
9.5 Summary 271

Bibliography 273

Index 293