Part I Collective Risk Models

1 The Basic Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The Poisson Process</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 The Homogeneous Poisson Process, the Intensity Function, the Cramér-Lundberg Model</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 The Markov Property</td>
<td>12</td>
</tr>
<tr>
<td>2.1.3 Relations Between the Homogeneous and the Inhomogeneous Poisson Process</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 The Homogeneous Poisson Process as a Renewal Process</td>
<td>16</td>
</tr>
<tr>
<td>2.1.5 The Distribution of the Inter-Arrival Times</td>
<td>20</td>
</tr>
<tr>
<td>2.1.6 The Order Statistics Property</td>
<td>22</td>
</tr>
<tr>
<td>2.1.7 A Discussion of the Arrival Times of the Danish Fire Insurance Data 1980-1990</td>
<td>32</td>
</tr>
<tr>
<td>2.1.8 An Informal Discussion of Transformed and Generalized Poisson Processes</td>
<td>35</td>
</tr>
<tr>
<td>Exercises</td>
<td>46</td>
</tr>
</tbody>
</table>

2 Models for the Claim Number Process

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 The Renewal Process</td>
<td>53</td>
</tr>
<tr>
<td>2.2.1 Basic Properties</td>
<td>53</td>
</tr>
<tr>
<td>2.2.2 An Informal Discussion of Renewal Theory</td>
<td>60</td>
</tr>
<tr>
<td>Exercises</td>
<td>65</td>
</tr>
</tbody>
</table>

2.3 The Mixed Poisson Process | 66 |

Exercises | 69 |
3 The Total Claim Amount .. 71
 3.1 The Order of Magnitude of the Total Claim Amount 72
 3.1.1 The Mean and the Variance in the Renewal Model 73
 3.1.2 The Asymptotic Behavior in the Renewal Model 74
 3.1.3 Classical Premium Calculation Principles 78
 Exercises ... 80
 3.2 Claim Size Distributions .. 82
 3.2.1 An Exploratory Statistical Analysis: QQ-Plots 82
 3.2.2 A Preliminary Discussion of Heavy- and Light-Tailed
 Distributions .. 86
 3.2.3 An Exploratory Statistical Analysis: Mean Excess Plots 88
 3.2.4 Standard Claim Size Distributions and Their Properties 94
 3.2.5 Regularly Varying Claim Sizes and Their Aggregation ... 99
 3.2.6 Subexponential Distributions 103
 Exercises ... 106
 3.3 The Distribution of the Total Claim Amount 109
 3.3.1 Mixture Distributions ... 110
 3.3.2 Space-Time Decomposition of a Compound Poisson
 Process ... 115
 3.3.3 An Exact Numerical Procedure for Calculating the
 Total Claim Amount Distribution 120
 3.3.4 Approximation to the Distribution of the Total Claim
 Amount Using the Central Limit Theorem 125
 3.3.5 Approximation to the Distribution of the Total Claim
 Amount by Monte Carlo Techniques 130
 Exercises ... 138
 3.4 Reinsurance Treaties .. 142
 Exercises ... 149

4 Ruin Theory .. 151
 4.1 Risk Process, Ruin Probability and Net Profit Condition 151
 Exercises ... 156
 4.2 Bounds for the Ruin Probability 157
 4.2.1 Lundberg's Inequality ... 157
 4.2.2 Exact Asymptotics for the Ruin Probability: the
 Small Claim Case ... 162
 4.2.3 The Representation of the Ruin Probability as a
 Compound Geometric Probability 172
 4.2.4 Exact Asymptotics for the Ruin Probability: the
 Large Claim Case ... 174
 Exercises ... 177
8.1.5 Effects of Inflation and Interest .. 266
Exercises ... 267
8.2 A General Model with Delay in Reporting and Settlement of
Claim Payments ... 268
8.2.1 The Basic Model and the Basic Decomposition
of Time-Claim Size Space .. 268
8.2.2 The Basic Decomposition of the Claim Number Process 271
8.2.3 The Basic Decomposition of the Total Claim Amount .. 273
8.2.4 An Excursion to Teletraffic and Long Memory:
The Stationary IBNR Claim Number Process 278
8.2.5 A Critique of the Basic Model 284
Exercises ... 286

9 Weak Convergence of Point Processes 291
9.1 Definition and Basic Examples .. 292
9.1.1 Convergence of the Finite-Dimensional Distributions .. 292
9.1.2 Convergence of Laplace Functionals 294
Exercises .. 299
9.2 Point Processes of Exceedances and Extremes 300
9.2.1 Convergence of the Point Processes of Exceedances ... 300
9.2.2 Convergence in Distribution of Maxima and Order
Statistics Under Affine Transformations 305
9.2.3 Maximum Domains of Attraction 309
9.2.4 The Point Process of Exceedances at the Times of a
Renewal Process ... 316
Exercises .. 321
9.3 Asymptotic Theory for the Reinsurance Treaties of Extreme
Value Type ... 324
Exercises .. 331

Part IV Special Topics

10 An Excursion to Lévy Processes 335
10.1 Definition and First Examples of Lévy Processes 335
Exercises .. 338
10.2 Some Basic Properties of Lévy Processes 338
Exercises .. 340
10.3 Infinite Divisibility: The Lévy-Khintchine Formula 341
Exercises .. 347
10.4 The Lévy-Itô Representation of a Lévy Process 348
Exercises .. 355
10.5 Some Special Lévy Processes ... 355
Exercises .. 361