The SABR/LIBOR Market Model
Pricing, Calibration and Hedging for Complex Interest-Rate Derivatives

Riccardo Rebonato
Kenneth McKay
and
Richard White
Contents

Acknowledgements xi

1 Introduction 1

I The Theoretical Set-Up 7

2 The LIBOR Market Model 9

2.1 Definitions 10
2.2 The Volatility Functions 11
2.3 Separating the Correlation from the Volatility Term 12
2.4 The Caplet-Pricing Condition Again 14
2.5 The Forward-Rate/Forward-Rate Correlation 16

2.5.1 The Simple Exponential Correlation 16
2.5.2 The Multiplicative Correlation 17

2.6 Possible Shapes of the Doust Correlation Function 19
2.7 The Covariance Integral Again 21

3 The SABR Model 25

3.1 The SABR Model (and Why it is a Good Model) 25
3.2 Description of the Model 26
3.3 The Option Prices Given by the SABR Model 27

3.4 Special Cases 28

3.4.1 ATM Options 28
3.4.2 The Normal Case ($\beta = 0$) 28
3.4.3 The Log-Normal Case ($\beta = 1$) 29

3.5 Qualitative Behaviour of the SABR Model 29

3.5.1 Dependence on σ_0^2 29
3.5.2 Dependence on β 31
3.5.3 Dependence on ρ 33
3.5.4 Dependence on ν 33
3.6 The Link Between the Exponent, β, and the Volatility of Volatility, ν 35
3.7 Volatility Clustering in the (LMM)-SABR Model 37
3.8 The Market 40
 3.8.1 Analysis of $\sigma_0^T (\beta = 0.5)$ 40
 3.8.2 Analysis of $\nu^T (\beta = 0.5)$ 41
 3.8.3 Analysis of $\rho^T (\beta = 0.5)$ 43
3.9 How Do We Know that the Market has Chosen $\beta = 0.5$? 43
3.10 The Problems with the SABR Model 46
 3.10.1 Log-Normality of the Volatility Process 46
 3.10.2 Problems with the (Stochastic) CEV Process 47

4 The LMM-SABR Model 51
 4.1 The Equations of Motion 52
 4.2 The Nature of the Stochasticity Introduced by Our Model 53
 4.3 A Simple Correlation Structure 54
 4.4 A More General Correlation Structure 55
 4.5 Observations on the Correlation Structure 57
 4.6 The Volatility Structure 58
 4.7 What We Mean by Time Homogeneity 59
 4.8 The Volatility Structure in Periods of Market Stress 59
 4.9 A More General Stochastic Volatility Dynamics 63
 4.10 Calculating the No-Arbitrage Drifts 64
 4.10.1 Preliminaries 64
 4.10.2 Standard LIBOR and LIBOR in Arrears 70
 4.10.3 LIBOR in Arrears: The Volatility Drift 73
 4.10.4 The Drifts in the General Case of Several Forward Rates 74
 4.10.5 Volatility Drifts in the Swap Measure 75

II Implementation and Calibration 79
5 Calibrating the LMM-SABR Model to Market Caplet Prices 81
 5.1 The Caplet-Calibration Problem 81
 5.2 Choosing the Parameters of the Function, $g(\cdot)$, and the Initial Values, k_0^T 83
 5.3 Choosing the Parameters of the Function $h(\cdot)$ 84
 5.4 Choosing the Exponent, β, and the Correlation, ϕ_{SABR} 88
 5.5 Results 88
 5.6 Calibration in Practice: Implications for the SABR Model 91
 5.6.1 Looking at Caplets in Isolation 91
 5.6.2 Looking at Caplets and Swaptions Together 95
 5.7 Implications for Model Choice 99
6 Calibrating the LMM-SABR Model to Market Swaption Prices 101
 6.1 The Swaption Calibration Problem 101
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Swap Rate and Forward Rate Dynamics</td>
<td>102</td>
</tr>
<tr>
<td>6.3</td>
<td>Approximating the Instantaneous Swap Rate Volatility, S_t</td>
<td>104</td>
</tr>
<tr>
<td>6.4</td>
<td>Approximating the Initial Value of the Swap Rate Volatility, Σ_0 (First Route)</td>
<td>105</td>
</tr>
<tr>
<td>6.5</td>
<td>Approximating Σ_0 (Second Route) and the Volatility of Volatility of the Swap Rate, V</td>
<td>106</td>
</tr>
<tr>
<td>6.6</td>
<td>Approximating the Swap-Rate/Swap-Rate-Volatility Correlation, R_{SABR}</td>
<td>108</td>
</tr>
<tr>
<td>6.7</td>
<td>Approximating the Swap Rate Exponent, B</td>
<td>108</td>
</tr>
<tr>
<td>6.8</td>
<td>Results</td>
<td>109</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Comparison between Approximated and Simulation Prices</td>
<td>109</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Comparison between Parameters from the Approximations and the Simulations</td>
<td>117</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusions and Suggestions for Future Work</td>
<td>118</td>
</tr>
<tr>
<td>6.10</td>
<td>Appendix: Derivation of Approximate Swap Rate Volatility</td>
<td>118</td>
</tr>
<tr>
<td>6.11</td>
<td>Appendix: Derivation of Swap-Rate/Swap-Rate-Volatility Correlation, R_{SABR}</td>
<td>120</td>
</tr>
<tr>
<td>6.12</td>
<td>Appendix: Approximation of dS_t/S_t</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>Calibrating the Correlation Structure</td>
<td>125</td>
</tr>
<tr>
<td>7.1</td>
<td>Statement of the Problem</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Creating a Valid Model Matrix</td>
<td>126</td>
</tr>
<tr>
<td>7.2.1</td>
<td>First Strategy, Stage 1: Diagonalize P</td>
<td>128</td>
</tr>
<tr>
<td>7.2.2</td>
<td>First Strategy, Stage 2: Analytic Optimization of c'</td>
<td>128</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Second Strategy: Optimizing over Angles</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>A Case Study: Calibration Using the Hypersphere Method</td>
<td>131</td>
</tr>
<tr>
<td>7.4</td>
<td>Which Method Should One Choose?</td>
<td>137</td>
</tr>
<tr>
<td>7.5</td>
<td>Appendix</td>
<td>138</td>
</tr>
<tr>
<td>III</td>
<td>Empirical Evidence</td>
<td>141</td>
</tr>
<tr>
<td>8</td>
<td>The Empirical Problem</td>
<td>143</td>
</tr>
<tr>
<td>8.1</td>
<td>Statement of the Empirical Problem</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>What Do We Know from the Literature?</td>
<td>145</td>
</tr>
<tr>
<td>8.3</td>
<td>Data Description</td>
<td>148</td>
</tr>
<tr>
<td>8.4</td>
<td>Distributional Analysis and Its Limitations</td>
<td>150</td>
</tr>
<tr>
<td>8.5</td>
<td>What is the True Exponent β?</td>
<td>153</td>
</tr>
<tr>
<td>8.6</td>
<td>Appendix: Some Analytic Results</td>
<td>155</td>
</tr>
<tr>
<td>9</td>
<td>Estimating the Volatility of the Forward Rates</td>
<td>159</td>
</tr>
<tr>
<td>9.1</td>
<td>Expiry Dependence of Volatility of Forward Rates</td>
<td>160</td>
</tr>
<tr>
<td>9.2</td>
<td>Direct Estimation</td>
<td>162</td>
</tr>
<tr>
<td>9.3</td>
<td>Looking at the Normality of the Residuals</td>
<td>164</td>
</tr>
<tr>
<td>9.4</td>
<td>Maximum-Likelihood and Variations on the Theme</td>
<td>171</td>
</tr>
</tbody>
</table>
CONTENTS

9.5 Information About the Volatility from the Options Market 175
9.6 Overall Conclusions 178

10 Estimating the Correlation Structure 181
10.1 What We are Trying to Do 181
10.2 Some Results from Random Matrix Theory 182
10.3 Empirical Estimation 185
10.4 Descriptive Statistics 185
 10.4.1 The Forward-Rate/Forward-Rate Correlation Matrix 185
 10.4.2 The Forward-Rate/Volatility Correlation Block 187
 10.4.3 The Volatility/Volatility Correlation Matrix 188
10.5 Signal and Noise in the Empirical Correlation Blocks 188
 10.5.1 The Forward-Rate/Forward-Rate Correlation Matrix 188
 10.5.2 The Volatility/Volatility Correlation Matrix 190
 10.5.3 The Forward-Rate/Volatility Correlation Block 190
10.6 What Does Random Matrix Theory Really Tell Us? 190
10.7 Calibrating the Correlation Matrices 191
 10.7.1 The Fitting Procedure 192
 10.7.2 Results 192
10.8 How Much Information Do the Proposed Models Retain? 195
 10.8.1 Eigenvalues of the Correlation Blocks 195
 10.8.2 Eigenvalues of Differences in the Correlation Blocks 196
 10.8.3 Entropy Measures 198
 10.8.4 The Forward-Rate/Volatility Correlation Block 202

IV Hedging 203

11 Various Types of Hedging 205
11.1 Statement of the Problem 205
11.2 Three Types of Hedging 206
 11.2.1 In- and Out-of-Model Hedging 206
 11.2.2 Functional-Dependence Hedging 207
11.3 Definitions 210
11.4 First-Order Derivatives with Respect to the Underlyings 211
 11.4.1 Delta Hedging 211
 11.4.2 Vega Hedging 213
11.5 Second-Order Derivatives with Respect to the Underlyings 214
 11.5.1 Vanna and Volga 214
11.6 Generalizing Functional-Dependence Hedging 215
11.7 How Does the Model Know about Vanna and Volga? 219
11.8 Choice of Hedging Instrument 220