Gero Hocker

Market – Hierarchy – Networking: Coordination in Times of Globalization, Fragmentation, and Uncertainty
Contents

Introduction 17

Part I: The World of Rational Choice and Isolated Maximizing Individuals 21

1. Coordination within Neoclassical Economics: The Degree of Vertical Integration 23
 1.1 Transaction Costs Theory and the Choice of the Coordination Structure Between ‘Market’ and ‘Hierarchy’ 27
 1.1.1 The Boundaries of the Firm 35
 1.1.2 Frequency of Use and Transaction-Specific Investment – an Attempt to make Transaction Cost Economics ‘Operational’ 41
 1.1.3 The Inappropriateness of the Neoclassical Dichotomy for Conditions of Fragmentation, Net-Structures and Strong Uncertainty 50
 1.2 First Résumé 54

2. Market and Hierarchy – Two ‘Void Sets’ Without Practical Evidence 57
 2.1 The Relevance of Globalization and Fragmentation for Transactions 60
 2.2 Bounded Rationality and Radical Uncertainty Require New Forms of Coordination 63
 2.3 Second Résumé 71

Part II: The World of Direct Interdependencies and Complexity 75

3. Networks as Alternative Coordination Structures: The Development of the ‘Organizational Triangle’ 77
 3.1 The Emergence of Network Cooperations as Institutions 80
 3.2 The Organizational Triangle 83
 3.3 Local Clusters 83
 3.4 Different Net Types of the New Kind and their Categorization in the Organizational Triangle 89
 3.4.1 Hub&Spoke Networks 90
 3.4.2 Open Source Networks 94
 3.5 ‘Structure-Governance-Performance’: Concept and Measurement 98

13
Part III: Case Studies – Real World Network Structures in the Organizational Triangle

4. Empirical Appearances of Networks Distinctive to ‘Market’ and ‘Hierarchy’ – Mercedes as a ‘Closed Shop’-Structure

4.1 DaimlerChrysler in Tuscaloosa, Alabama, and its suppliers as a Hub&Spoke-Structure

4.1.1 The Hub – Mercedes Benz United States International (MBUSI)
4.1.2 Decoma
4.1.3 FormelD
4.1.4 Delphi
4.1.5 Hoerbiger Hydraulics Inc.
4.1.6 Eberspaecher North America, Inc.
4.1.7 ZF Industries, Inc.
4.1.8 TW-Fitting-NA
4.1.9 Borgers USA Corp.
4.1.10 Brose Tuscaloosa, Inc.
4.1.11 Weidman Plastics Technology North America, Inc.
4.1.12 ISE Innomotive Systems U.S., Inc.
4.1.13 Eissmann Automotive North America, Inc.
4.1.14 ORIS Automotive Parts AL, Inc.

4.2 ‘Ideal Market’ Versus ‘Ideal Hierarchy’ Versus ‘Ideal, Institutionalized Cooperation/Network’: Positioning of the Mercedes Benz Network in the Organizational Triangle – The Views of the Hub and the suppliers

4.2.1 Network Structure
4.2.2 Governance
4.2.3 Performance

4.3 Spatial Proximity and Diversification of Customer Base as Criteria to Categorize the Current Network Structure

4.4 Fourth Résumé

5. Openness, Shared Information and the Willingness to Reciprocate: Different Institutions in the Internet Economy

5.1 Some Explorative Interviews of Linux Representatives in Germany and the U.S.

5.1.1 LUG Bremen
5.1.2 LUG Osnabrueck
5.1.3 LUG Walsrode 197
5.1.4 LUG Wilhelmshaven 200
5.1.5 Open Source Development Laboratories (OSDL), Portland, Oregon 203

5.2 Allocation of Linux Within the Organizational Triangle – General Tendencies in ‘Network Structure’, ‘Governance’ and ‘Performance’ 209
5.2.1 Network Structure 210
5.2.2 Governance 211
5.2.3 Performance 213

5.3 Other Approaches to Open Source – Wikipedia and OScar in Comparison to MBUSI and Linux 214
5.3.1 The Wikipedia Case 214
5.3.2 Transferring the Advantages of Open Source into Manufacturing - OScar: The Open Source Car 215

Part IV: Consequences from the Case Studies for the Theory of Coordination 217

6. Possible Learning Effects – is the Open Source Model a Chance for Traditional Industries to Deal With Uncertainty and Complexity? 219
6.1 Network Structure – Spatial Proximity and the Emergence of Trust 220
6.2 Governance – Duration of the Cooperation and the Flow of Information for Highly Complex Products 222
6.3 Performance – Advantages of ‘Open’ Approaches in Comparison to Hierarchical Coordinational Structures 225
6.4 Résumé: Further Research Perspectives 227

7. Summary and Conclusion 229

Tables and Illustrations 231

References 233