## Contents

Preface xiii  
Acknowledgements xv  

1 Overview 1  

Part I Database Modeling 7  

2 Database modeling 9  
2.1 Introduction 9  
2.2 Building the data model 11  
2.2.1 Basic framework and initial discussions 11  
2.2.2 The data model 15  
2.3 Duration of operational risk events 18  
2.4 Model risk—models, inputs and price verification 22  
2.4.1 Inputs and feeds 22  
2.4.2 Model 23  
2.4.3 Results 23  
2.5 The impact of operational risk on market and credit risk 23  
2.6 Basic database framework for the integration of market, credit and operational risk 28  
2.7 Including insurance/hedging in the database 28  
2.8 Provisioning treatment of expected operational losses 29  
2.9 Developing an operational risk policy 30  
2.9.1 Operational risk mapping and definitions 30  
2.9.2 Operational loss directive 31  
2.9.3 Operational risk measurement policy 31  
References 32  
Appendix A External databases 32  
Appendix B Risk mapping ("self-assessment") 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II Stochastic Modeling</td>
<td>37</td>
</tr>
<tr>
<td>3 Severity models</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2 General approach</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Basic concepts in probability theory</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1 Probability density functions (PDFs) and cumulative distribution functions (CDFs)</td>
<td>39</td>
</tr>
<tr>
<td>3.3.2 Moments</td>
<td>40</td>
</tr>
<tr>
<td>3.3.3 Measures of central tendency</td>
<td>42</td>
</tr>
<tr>
<td>3.3.4 Central limit theory</td>
<td>42</td>
</tr>
<tr>
<td>3.3.5 Law of large numbers and Tchebysheff's inequality</td>
<td>44</td>
</tr>
<tr>
<td>3.3.6 Methods to estimate parameters</td>
<td>44</td>
</tr>
<tr>
<td>3.3.7 Transformation of distributions—how new distributions are built</td>
<td>45</td>
</tr>
<tr>
<td>3.3.8 Empirical distribution</td>
<td>46</td>
</tr>
<tr>
<td>3.4 Tail heaviness</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Goodness-of-fit tests</td>
<td>47</td>
</tr>
<tr>
<td>3.5.1 Formal tests</td>
<td>47</td>
</tr>
<tr>
<td>3.5.2 Graphical tests</td>
<td>49</td>
</tr>
<tr>
<td>3.6 A few popular probability distributions</td>
<td>49</td>
</tr>
<tr>
<td>3.6.1 Normal (or Gauss) distribution</td>
<td>50</td>
</tr>
<tr>
<td>3.6.2 Lognormal distribution</td>
<td>51</td>
</tr>
<tr>
<td>3.6.3 Inverse normal (Wald) distribution</td>
<td>51</td>
</tr>
<tr>
<td>3.6.4 Exponential distribution</td>
<td>52</td>
</tr>
<tr>
<td>3.6.5 Weibull distribution</td>
<td>52</td>
</tr>
<tr>
<td>3.6.6 Pareto distribution</td>
<td>53</td>
</tr>
<tr>
<td>3.6.7 Gamma distribution</td>
<td>54</td>
</tr>
<tr>
<td>3.6.8 Cauchy distribution</td>
<td>55</td>
</tr>
<tr>
<td>3.6.9 Beta distribution</td>
<td>55</td>
</tr>
<tr>
<td>3.6.10 Rayleigh distribution</td>
<td>56</td>
</tr>
<tr>
<td>3.7 Application to a legal events database</td>
<td>56</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

4 Extreme value theory | 63 |
| 4.1 Introduction | 63 |
| 4.2 Risk management and statistics of extremes | 63 |
| 4.3 Extreme distributions and extreme value theory | 65 |
| 4.4 Applying EVT to operational risk | 67 |
| 4.4.1 Parameter estimation | 69 |
| 4.5 Goodness-of-fit tests | 77 |
| 4.5.1 Graphical tests for extreme value theory | 77 |
| 4.5.2 Formal tests for extreme value distributions | 79 |
| 4.6 Working with quantiles | 81 |
| 4.7 Back to the example at the end of Chapter 3 | 83 |
| References | 84 |
| Appendix A Peaks over threshold method | 85 |
5 Frequency models

5.1 Introduction

5.2 Frequency probability distributions, truncation, zero-modification and compounding

5.2.1 Poisson

5.2.2 Negative binomial

5.2.3 Binomial

5.2.4 Hypergeometric

5.2.5 Geometric

5.2.6 Polya–Aeppli (Poisson–geometric)

5.3 Goodness-of-fit tests

5.3.1 Chi-squared test

5.4 Application to the frauds database

5.5 Extreme events frequency analysis

5.5.1 Indexing operational losses

5.5.2 L-Moments in estimating parameters

5.5.3 Identifying and testing homogeneous operational risk event frequency clusters (business units, products, etc.)

5.5.4 Estimation for sites with data not available

References

6 Operational value at risk

6.1 Introduction

6.2 The concept of VaR and the differences between the market and operational VaRs

6.3 Aggregated risk models

6.4 Aggregating the severity and frequency distributions

6.4.1 Formal results

6.4.2 Practical solution

6.5 Coherent measures of risk

6.5.1 Sub-additivity

6.5.2 Homogeneity

6.5.3 Risk-free condition

6.5.4 Monotonicity

6.6 Backtesting the operational VaR model

6.6.1 Backtesting analytical framework

6.6.2 Basic analysis

6.6.3 Statistical analysis

6.7 Differences between backtesting market and operational VaR models

References

7 Stochastic processes in operational risk

7.1 Introduction

7.2 Risk theory and ruin process

7.3 Ruin theory applied to hedging an OR portfolio

7.4 Markov chains

7.5 Renewal processes
7.5.1 Homogeneous Poisson process 126
7.5.2 Non-homogeneous Poisson process 127
7.5.3 Cox process (doubly stochastic) 127
7.6 Queuing theory 128
7.7 Reliability and mean time between failures 131
7.8 Stopping times 132
7.9 Mixture distributions 133
References 133

Part III  Causal Modeling 135

8 Causal models: applying econometrics and time series statistics to operational risk 137
8.1 Introduction 137
8.2 Basics of multiple regression 137
  8.2.1 Goodness-of-fit or $R^2$ coefficient 138
  8.2.2 F-Test 139
  8.2.3 Standard errors and t-ratios 139
  8.2.4 Correlation vs. regression 139
8.3 Econometric models: usual problems 140
  8.3.1 Autocorrelation 140
  8.3.2 Multicollinearity 140
  8.3.3 Heteroscedasticity 141
8.4 Model selection criteria 141
  8.4.1 Akaike information criterion 141
  8.4.2 Schwarz Bayesian criterion 142
8.5 Spectral analysis 142
8.6 Multivariate analysis 143
  8.6.1 Factor analysis 143
  8.6.2 Canonical correlation 144
8.7 Multifactor modeling in OR—causal modeling 145
8.8 Kalman filter 153
8.9 Regime switching models 157
8.10 Discriminant analysis: developing operational risk scores 158
8.11 Developing a matrix of probability migration of operational risk ratings 161
References 162

9 Non-linear models in operational risk 163
9.1 Introduction 163
9.2 Neural networks 163
9.3 Bayesian belief networks 167
9.4 Data mining 167
9.5 Fuzzy logic 169
  9.5.1 Fuzzy sets 170
  9.5.2 Context dependency and intersection of fuzzy sets 171
| Contents |
|----------------------|-------|
| 9.5.3 Use of fuzzy logic in operational risk | 172 |
| 9.5.4 Conclusion | 174 |
| References | 175 |

10 Bayesian techniques in operational risk  177
  10.1 Introduction to Bayesian theory  177
  10.2 More advanced topics in Bayesian theory  182
    10.2.1 Choosing a prior distribution  182
    10.2.2 Hierarchical models  183
    10.2.3 Model checking and sensitivity analysis in Bayesian models  184
  10.3 Bayesian sampling techniques  185
    10.3.1 The data augmentation algorithm  186
    10.3.2 Bayesian bootstrapping  187
    10.3.3 Markov chain Monte Carlo algorithms  187
  10.4 Bayesian EVT  189
References  189

Part IV Operational Risk Management  191

11 Operational risk reporting, control and management  193
  11.1 Introduction  193
  11.2 Operational risk reporting  193
    11.2.1 Reports for market and credit risk  194
    11.2.2 OR management reports  196
    11.2.3 Reports to the operational risk hedgers  197
    11.2.4 Reports to the regulators  197
  11.3 Operational risk control—intra-day (real-time) OR control  198
  11.4 Operational cost control—developing operational risk strategies  200
  11.5 Active operational risk management—risk capital, capital allocation and performance measurement  207
    11.5.1 Earnings volatility-based methods  208
    11.5.2 Operational VaR-based methods  209
    11.5.3 Shareholders’ value approaches  212

12 Stress tests and scenario analysis  213
  12.1 Introduction  213
  12.2 Useful tools in operational risk simulation  214
    12.2.1 Random uniform variates generation  214
    12.2.2 Copulas and multivariate extreme value distributions  215
    12.2.3 Latin hypercube  217
  12.3 Scenario generations using the multifactor model  217
    12.3.1 Stochastic independent variables  218
    12.3.2 Estimating confidence intervals for the model parameters  220
  12.4 Key control indicators and the volatility of losses  221
    12.4.1 Simple calculation of volatility  223
    12.4.2 GARCH model to calculate the volatility  225
12.5 Developing an add-in via control migration probabilities 225
12.6 Generating scenarios based on the parameters of the operational VaR model 226
References 229

Part V Hedging Operational Risk 231

13 Operational risk derivatives 233
13.1 Introduction 233
13.1.1 Risk mitigation 233
13.1.2 Insurance 233
13.1.3 Capital allocation 234
13.2 Basic framework and challenges in pricing OR derivatives 234
13.2.1 Incomplete markets 234
13.2.2 Utility theory 235
13.2.3 Moral hazard 236
13.2.4 Adverse selection 237
13.2.5 Actuarial vs. financial pricing 237
13.3 Operational risk derivatives 240
13.3.1 ORL bonds 240
13.3.2 OR swap 246
13.3.3 “First-loss-to-happen” put 249
13.3.4 Equity OR Cat put 250
References 250

14 Developing a hedging program for operational risk 253
14.1 Introduction 253
14.2 Retaining and quasi-retaining structures 253
14.2.1 Internal capital retention 253
14.2.2 Captive insurance 254
14.2.3 Finite risk 255
14.2.4 Risk retention groups 258
14.3 Operational risk insurance 258
14.3.1 Is insurance a proper hedge for OR? 258
14.3.2 Integrated insurance programs 259
14.4 Auditing insurance efficiency 261
14.5 Application of developing a simple hedging program 261
14.5.1 First or primary layer 263
14.5.2 Secondary layer 263
14.5.3 Excess layer 265
References 266

Part VI Regulatory Capital 269

15 Operational risk regulatory capital 271
15.1 Introduction 271
15.2 Supervisory framework—the three supervision pillars 272
15.3 Pillar 1—regulatory minimum capital approaches 273
  15.3.1 Basic indicator approach 274
  15.3.2 Standardized approach 275
  15.3.3 Internal measurement approach 277
  15.3.4 Advanced measurement approaches 280
15.4 Qualitative requirements under the three pillars 281
15.5 Considerations for the current proposals for operational risk 282
15.6 Conclusion/warning 283

Part VII Measuring “Other Risks” 285

16 An enterprise-wide model for measuring reputational risk 287
  16.1 What is reputational risk? 287
  16.2 Background on econometric event-analysis models 288
  16.3 The multifactor model 289
    16.3.1 Statistical testing of the multifactor model 290
  16.4 Estimating the probability of reputational events 290
    16.4.1 Statistical testing of the likelihood model 291
  16.5 Estimation of the reputational VaR (VaR_{RE}) 291
    16.5.1 Real-time basis 292
    16.5.2 Periodical basis 292
  16.6 Empirical results on some financial institutions 293
    16.6.1 Event 1—Daiwa Securities 293
    16.6.2 Event 2—Nomura’s executives’ collusion with gangsters 295
    16.6.3 Event 3—NatWest options mispricing 296
  16.7 VaR_{RE} and hedging reputational risk 301
  16.8 Conclusions 301

References 303

17 Measuring concentration (or key personnel) risk 305
  17.1 Introduction 305
  17.2 Measuring key personnel risk in the front-office 305
    17.2.1 Calculating the Gini concentration index 306
    17.2.2 Multifactor logit models—estimating the likelihood
      of key people leaving the bank 308
  17.3 Front-office example 309
  17.4 Measuring key personnel risk in the back-office 312
  17.5 Conclusion 314

References 314

18 Using real options in modeling and measuring operational
and “other” risks 315
  18.1 Introduction 315
  18.2 Evaluating strategy risk using switching options 316
  18.3 Developing a passport option structure to price operational risk 318