Modelling Longevity Dynamics for Pensions and Annuity Business

Ermanno Pitacco
University of Trieste (Italy)

Michel Denuit
UCL, Louvain-la-Neuve (Belgium)

Steven Haberman
City University, London (UK)

Annamaria Olivieri
University of Parma (Italy)
Contents

Preface

1. Life annuities
 1.1 Introduction
 1.2 Annuities-certain versus life annuities
 1.2.1 Withdrawing from a fund
 1.2.2 Avoiding early fund exhaustion
 1.2.3 Risks in annuities-certain and in life annuities
 1.3 Evaluating life annuities: deterministic approach
 1.3.1 The life annuity as a financial transaction
 1.3.2 Actuarial values
 1.3.3 Technical bases
 1.4 Cross-subsidy in life annuities
 1.4.1 Mutuality
 1.4.2 Solidarity
 1.4.3 'Tontine' annuities
 1.5 Evaluating life annuities: stochastic approach
 1.5.1 The random present value of a life annuity
 1.5.2 Focussing on portfolio results
 1.5.3 A first insight into risk and solvency
 1.5.4 Allowing for uncertainty in mortality assumptions
 1.6 Types of life annuities
 1.6.1 Immediate annuities versus deferred annuities
 1.6.2 The accumulation period
 1.6.3 The decumulation period
 1.6.4 The payment profile
 1.6.5 About annuity rates
 1.6.6 Variable annuities and GMxB features
 1.7 References and suggestions for further reading
The basic mortality model

2.1 Introduction

2.2 Life tables

- 2.2.1 Cohort tables and period tables
- 2.2.2 'Population' tables versus 'market' tables
- 2.2.3 The life table as a probabilistic model
- 2.2.4 Select mortality

2.3 Moving to an age-continuous context

- 2.3.1 The survival function
- 2.3.2 Other related functions
- 2.3.3 The force of mortality
- 2.3.4 The central death rate
- 2.3.5 Assumptions for non-integer ages

2.4 Summarizing the lifetime probability distribution

- 2.4.1 The life expectancy
- 2.4.2 Other markers
- 2.4.3 Markers under a dynamic perspective

2.5 Mortality laws

- 2.5.1 Laws for the force of mortality
- 2.5.2 Laws for the annual probability of death
- 2.5.3 Mortality by causes

2.6 Non-parametric graduation

- 2.6.1 Some preliminary ideas
- 2.6.2 The Whittaker–Henderson model
- 2.6.3 Splines

2.7 Some transforms of the survival function

2.8 Mortality at very old ages

- 2.8.1 Some preliminary ideas
- 2.8.2 Models for mortality at highest ages

2.9 Heterogeneity in mortality models

- 2.9.1 Observable heterogeneity factors
- 2.9.2 Models for differential mortality
- 2.9.3 Unobservable heterogeneity factors
 - The frailty
- 2.9.4 Frailty models
- 2.9.5 Combining mortality laws with frailty models

2.10 References and suggestions for further reading
5 Forecasting mortality: applications and examples of age-period models

5.1 Introduction 181
5.2 Lee–Carter mortality projection model
 5.2.1 Specification 186
 5.2.2 Calibration 188
 5.2.3 Application to Belgian mortality statistics 200
5.3 Cairns–Blake–Dowd mortality projection model
 5.3.1 Specification 203
 5.3.2 Calibration 206
 5.3.3 Application to Belgian mortality statistics 207
5.4 Smoothing 209
 5.4.1 Motivation 209
 5.4.2 P-splines approach 210
 5.4.3 Smoothing in the Lee–Carter model 212
 5.4.4 Application to Belgian mortality statistics 213
5.5 Selection of an optimal calibration period 214
 5.5.1 Motivation 214
 5.5.2 Selection procedure 216
 5.5.3 Application to Belgian mortality statistics 217
5.6 Analysis of residuals 218
 5.6.1 Deviance and Pearson residuals 218
 5.6.2 Application to Belgian mortality statistics 220
5.7 Mortality projection 221
 5.7.1 Time series modelling for the time indices 221
 5.7.2 Modelling of the Lee-Carter time index 223
 5.7.3 Modelling the Cairns-Blake-Dowd time indices 228
5.8 Prediction intervals 229
 5.8.1 Why bootstrapping? 229
 5.8.2 Bootstrap percentiles confidence intervals 230
 5.8.3 Application to Belgian mortality statistics 232
5.9 Forecasting life expectancies 234
 5.9.1 Official projections performed by the Belgian Federal Planning Bureau (FPB) 235
 5.9.2 Andreev–Vaupel projections 235
 5.9.3 Application to Belgian mortality statistics 237
6 Forecasting mortality: applications and examples of age-period-cohort models

6.1 Introduction

6.2 LC age-period-cohort mortality projection model
 - Model structure 246
 - Error structure and model fitting 248
 - Mortality rate projections 253
 - Discussion 253

6.3 Application to United Kingdom mortality data 254

6.4 Cairns-Blake-Dowd mortality projection model: allowing for cohort effects 263

6.5 P-splines model: allowing for cohort effects 265

7 The longevity risk: actuarial perspectives

7.1 Introduction

7.2 The longevity risk
 - Mortality risks 268
 - Representing longevity risk: stochastic modelling issues 270
 - Representing longevity risk: some examples 273
 - Measuring longevity risk in a static framework 276

7.3 Managing the longevity risk
 - A risk management perspective 293
 - Natural hedging 299
 - Solvency issues 303
 - Reinsurance arrangements 318

7.4 Alternative risk transfers
 - Life insurance securitization 330
 - Mortality-linked securities 332
 - Hedging life annuity liabilities through longevity bonds 337

7.5 Life annuities and longevity risk
 - The location of mortality risks in traditional life annuity products 343
 - GAO and GAR 346
 - Adding flexibility to GAR products 347
7.6 Allowing for longevity risk in pricing 350
7.7 Financing post-retirement income 354
 7.7.1 Comparing life annuity prices 354
 7.7.2 Life annuities versus income drawdown 356
 7.7.3 The 'mortality drag' 359
 7.7.4 Flexibility in financing post-retirement income 363
7.8 References and suggestions for further reading 369

References 373

Index 389