About the Author xv
Preface xvi
Introduction xvii

Chapter 1
Strategy and Competition 1

1.1 Manufacturing Matters 5

1.2 A Framework for Operations Strategy 7

1.3 The Classical View of Operations Strategy 9

1.4 Competing in the Global Marketplace 14

1.5 Strategic Initiatives: Reengineering the Business Process 18

1.6 Strategic Initiatives: Just-in-Time 21

1.7 Strategic Initiatives: Time-Based Competition 23

1.8 Strategic Initiatives: Competing on Quality 24

1.9 Matching Process and Product Life Cycles 27

1.10 Learning and Experience Curves 31

1.11 Capacity Growth Planning: A Long-Term Strategic Problem 38

1.12 Summary 47

Additional Problems for Chapter 1 48

Appendix 1–A Present Worth Calculations 50
Bibliography 51

Chapter 2
Forecasting 52

2.1 The Time Horizon in Forecasting 55

2.2 Characteristics of Forecasts 56

2.3 Subjective Forecasting Methods 56

2.4 Objective Forecasting Methods 57

2.5 Notation Conventions 61

2.6 Evaluating Forecasts 61

2.7 Methods for Forecasting Stationary Series 64

2.8 Trend-Based Methods 75

Regression Analysis 75

More Problems for Section 2.8 78
Chapter 3
Aggregate Planning 124

Chapter Overview 124
3.1 Aggregate Units of Production 127
3.2 Overview of the Aggregate Planning Problem 128
3.3 Costs in Aggregate Planning 130
 Problems for Sections 3.1–3.3 132
3.4 A Prototype Problem 133
 Evaluation of a Chase Strategy
 (Zero Inventory Plan) 135
 Evaluation of the Constant Workforce Plan 136
 Mixed Strategies and Additional Constraints 138
 Problems for Section 3.4 139
3.5 Solution of Aggregate Planning Problems by Linear Programming 141
 Cost Parameters and Given Information 141
 Problem Variables 142
 Problem Constraints 142
 Rounding the Variables 143
 Extensions 144
 Other Solution Methods 146
3.6 Solving Aggregate Planning Problems by Linear Programming: An Example 147
 Problems for Sections 3.5 and 3.6 149
3.7 The Linear Decision Rule 152
3.8 Modeling Management Behavior 153
 Problems for Sections 3.7 and 3.8 155
3.9 Disaggregating Aggregate Plans 155
 Snapshot Application: Welch's Uses Aggregate Planning for Production Scheduling 157
 Problems for Section 3.9 158
3.10 Production Planning on a Global Scale 158
3.11 Practical Considerations 159
3.12 Historical Notes 160
3.13 Summary 161
 Additional Problems on Aggregate Planning 162

Appendix 3–A Glossary of Notation for Chapter 3 167
Bibliography 168

Supplement 1 Linear Programming 169
S1.1 Introduction 169
S1.2 A Prototype Linear Programming Problem 169
S1.3 Statement of the General Problem 171
 Definitions of Commonly Used Terms 172
 Features of Linear Programs 173
S1.4 Solving Linear Programming Problems
Graphically 174
 Graphing Linear Inequalities 174
 Graphing the Feasible Region 176
 Finding the Optimal Solution 177
 Identifying the Optimal Solution Directly
by Graphical Means 179
S1.5 The Simplex Method: An Overview 180
S1.6 Solving Linear Programming Problems
with Excel 181
 Entering Large Problems Efficiently 185
S1.7 Interpreting the Sensitivity Report: 187
 Shadow Prices 187
 Objective Function Coefficients and Right-
 Hand Sides 188
 Adding a New Variable 188
 Using Sensitivity Analysis 189
S1.8 Recognizing Special Problems 191
 Unbounded Solutions 191
 Empty Feasible Region 192
 Degeneracy 194
 Multiple Optimal Solutions 194
 Redundant Constraints 194
S1.9 The Application of Linear Programming
to Production and Operations Analysis 195
Bibliography 197

Chapter 4
Inventory Control Subject to Known
Demand 198

Chapter Overview 198
4.1 Types of Inventories 201
4.2 Motivation for Holding Inventories 202
4.3 Characteristics of Inventory Systems 203
4.4 Relevant Costs 204
 Holding Cost 204
 Order Cost 206
 Penalty Cost 207
 Problems for Sections 4.1–4.4 208
4.5 The EOQ Model 210
 The Basic Model 210
 Inclusion of Order Lead Time 213
 Sensitivity 214
 EOQ and JIT 215
 Problems for Section 4.5 216
4.6 Extension to a Finite Production Rate 218
 Problems for Section 4.6 219
4.7 Quantity Discount Models 220
 Optimal Policy for All-Units Discount Schedule 221
Summary of the Solution Technique for
All-Units Discounts 223
Incremental Quantity Discounts 223
Summary of the Solution Technique
for Incremental Discounts 225
Other Discount Schedules 225
Problems for Section 4.7 226

*4.8 Resource-Constrained Multiple
Product Systems 227
 Problems for Section 4.8 230
4.9 EOQ Models for Production Planning 230
 Problems for Section 4.9 234
4.10 Power-of-Two Policies 235
4.11 Historical Notes and Additional Topics 237
 Snapshot Application: Mervyn’s Recognized
 for State-of-the-Art Inventory
 Control System 238
4.12 Summary 239
 Additional Problems on Deterministic
 Inventory Models 240

Appendix 4–A Mathematical Derivations for
 Multiproduct Constrained EOQ Systems 244
Appendix 4–B Glossary of Notation for
 Chapter 4 246
Bibliography 246

Chapter 5
Inventory Control Subject to Uncertain
Demand 248

Chapter Overview 248
 Overview of Models Treated in This
 Chapter 252
5.1 The Nature of Randomness 253
5.2 Optimization Criterion 255
 Problems for Sections 5.1 and 5.2 256
5.3 The Newsboy Model 257
 Notation 257
 Development of the Cost Function 258
 Determining the Optimal Policy 259
 Optimal Policy for Discrete Demand 261
 Extension to Include Starting Inventory 261
 Snapshot Application: Using Inventory
 Models to Manage the Seed-Corn Supply
 Chain at Syngenta 262
 Extension to Multiple Planning Periods 263
 Problems for Section 5.3 264
5.4 Lot Size–Reorder Point Systems 266
 Describing Demand 267
 Decision Variables 267
6.10 Designing the Supply Chain in a Global Environment 355
 Snapshot Application: Norwegian Company Implements Decision Support System to Streamline Its Supply Chain 356
 Snapshot Application: Timken Battles Imports with Bundling 358
 Supply Chain Management in a Global Environment 359
 Snapshot Application: Digital Equipment Corporation Uses Mathematical Modeling to Plan Its Global Supply Chain 360
 Trends in Offshore Outsourcing 360
 Problems for Section 6.10 361

6.11 Summary 362
Bibliography 362

Chapter 7
Push and Pull Production Control Systems: MRP and JIT 364

Chapter Overview 364
 MRP Basics 367
 JIT Basics 369

7.1 The Explosion Calculus 370
 Problems for Section 7.1 374

7.2 Alternative Lot-Sizing Schemes 376
 EOQ Lot Sizing 376
 The Silver-Meal Heuristic 377
 Least Unit Cost 378
 Part Period Balancing 379
 Problems for Section 7.2 380

7.3 Incorporating Lot-Sizing Algorithms into the Explosion Calculus 382
 Problems for Section 7.3 383

7.4 Lot Sizing with Capacity Constraints 384
 Problems for Section 7.4 387

7.5 Shortcomings of MRP 388
 Uncertainty 388
 Capacity Planning 389
 Rolling Horizons and System Nervousness 390
 Additional Considerations 392
 Snapshot Application: Raymond Corporation Builds World-Class Manufacturing with MRP II 393
 Problems for Section 7.5 394

7.6 JIT Fundamentals 395
 The Mechanics of Kanban 395
 Single Minute Exchange of Dies 397
 Advantages and Disadvantages of the Just-in-Time Philosophy 398

Implementation of JIT in the United States 401
 Problems for Section 7.6 402

7.7 A Comparison of MRP and JIT 403

7.8 JIT or Lean Production? 404

7.9 Historical Notes 405

7.10 Summary 406
 Additional Problems for Chapter 7 407

Appendix 7–A Optimal Lot Sizing for Time-Varying Demand 411

Appendix 7–B Glossary of Notation for Chapter 7 415

Bibliography 416

Chapter 8
Operations Scheduling 417

Chapter Overview 417

8.1 Production Scheduling and the Hierarchy of Production Decisions 420

8.2 Important Characteristics of Job Shop Scheduling Problems 422
 Objectives of Job Shop Management 422

8.3 Job Shop Scheduling Terminology 423

8.4 A Comparison of Specific Sequencing Rules 425
 First-Come, First-Served 425
 Shortest Processing Time 426
 Earliest Due Date 426
 Critical Ratio Scheduling 427

8.5 Objectives in Job Shop Management: An Example 428
 Problems for Sections 8.1–8.5 429

8.6 An Introduction to Sequencing Theory for a Single Machine 430
 Shortest-Processing-Time Scheduling 431
 Earliest-Due-Date Scheduling 432
 Minimizing the Number of Tardy Jobs 432
 Precedence Constraints: Lawler's Algorithm 433
 Snapshot Application: Millions Saved with Scheduling System for Fractional Aircraft Operators 435
 Problems for Section 8.6 435

8.7 Sequencing Algorithms for Multiple Machines 437
 Scheduling n Jobs on Two Machines 438
 Extension to Three Machines 439
 The Two-Job Flow Shop Problem 441
 Problems for Section 8.7 444

8.8 Stochastic Scheduling: Static Analysis 445
 Single Machine 445
 Multiple Machines 446
Chapter 8
8.9 Stochastic Scheduling: Dynamic Analysis 449
 Selection Disciplines Independent of Job Processing Times 451
 Selection Disciplines Dependent on Job Processing Times 452
 The cμ Rule 454
 Problems for Section 8.9 454

8.10 Assembly Line Balancing 455
 Problems for Section 8.10 459
 Snapshot Application: Manufacturing Divisions Realize Savings with Scheduling Software 461

8.11 Simulation: A Valuable Scheduling Tool 462

8.12 Post-MRP Production Scheduling Software 463

8.13 Historical Notes 463

8.14 Summary 464
 Additional Problems on Scheduling 465

Bibliography 471

Supplement 2 Queuing Theory 473

S2.1 Introduction 473
S2.2 Structural Aspects of Queuing Models 474
S2.3 Notation 475
S2.4 Little's Formula 476
S2.5 The Exponential and Poisson Distributions in Queuing 476
 Aside 477
S2.6 Birth and Death Analysis for the M/M/1 Queue 478
S2.7 Calculation of the Expected System Measures for the M/M/1 Queue 481
S2.8 The Waiting Time Distribution 482
S2.9 Solution of the General Case 484
S2.10 Multiple Servers in Parallel: The M/M/c Queue 485
S2.11 The M/M/1 Queue with a Finite Capacity 489
S2.12 Results for Nonexponential Service Distributions 492
S2.13 The M/G/∞ Queue 493
S2.14 Optimization of Queuing Systems 495
 Typical Service System Design Problems 495
 Modeling Framework 495
S2.15 Simulation of Queuing Systems 498

Bibliography 499

Chapter 9
9.1 Representing a Project as a Network 503
9.2 Critical Path Analysis 505
 Finding the Critical Path 508
 Problems for Sections 9.1 and 9.2 511
9.3 Time Gosting Methods 513
 Problems for Section 9.3 517
9.4 Solving Critical Path Problems with Linear Programming 518
 Linear Programming Formulation of the Cost–Time Problem 521
 Problems for Section 9.4 523
9.5 PERT: Project Evaluation and Review Technique 523
 Path Independence 528
 Problems for Section 9.5 531
 Snapshot Application: Warner Robins Streamlines Aircraft Maintenance with CCPM Project Management 533
9.6 Resource Considerations 533
 Resource Constraints for Single-Project Scheduling 533
 Resource Constraints for Multiproject Scheduling 535
 Resource Loading Profiles 536
 Problems for Section 9.6 538
9.7 Organizational Issues in Project Management 540
9.8 Historical Notes 541
9.9 Project Management Software for the PC 542
 Snapshot Application: Project Management Helps United Stay on Schedule 543
 Snapshot Application: Thomas Brothers Plans Staffing with Project Management Software 543
 Snapshot Application: Florida Power and Light Takes Project Management Seriously 543
9.10 Summary 544
 Additional Problems on Project Scheduling 545

Appendix 9–A Glossary of Notation for Chapter 9 548

Bibliography 549
Chapter 10

Facilities Layout and Location 550

Chapter Overview 550
 Snap Shot Application: Sun Microsystems
 Pioneers New Flex Office System 553

10.1 The Facilities Layout Problem 554

10.2 Patterns of Flow 555
 Activity Relationship Chart 555
 From-To Chart 557

10.3 Types of Layouts 559
 Fixed Position Layouts 559
 Product Layouts 559
 Process Layouts 560
 Layouts Based on Group Technology 560
 Problems for Sections 10.1–10.3 562

10.4 A Prototype Layout Problem
 and the Assignment Model 564
 The Assignment Algorithm 565
 Problems for Section 10.4 567

*10.5 More Advanced Mathematical Programming
 Formulations 568
 Problem for Section 10.5 569

10.6 Computerized Layout Techniques 569
 CRAFT 570
 COFAD 574
 ALDEP 575
 CORELAP 576
 PLANET 577
 Computerized Methods versus Human Planners 577
 Dynamic Plant Layouts 578
 Other Computer Methods 578
 Problems for Section 10.6 579

10.7 Flexible Manufacturing Systems 582
 Advantages of Flexible Manufacturing Systems 584
 Disadvantages of Flexible Manufacturing Systems 584
 Decision Making and Modeling of the FMS 585
 The Future of FMS 588
 Problems for Section 10.7 590

10.8 Locating New Facilities 590
 Snap Shot Application: Kraft Foods Uses Optimization and Simulation to Determine Best Layout 591
 Measures of Distance 592
 Problems for Section 10.8 593

10.9 The Single-Facility Rectilinear Distance Location Problem 593
 Contour Lines 596
 Minimax Problems 597
 Problems for Section 10.9 600

10.10 Euclidean Distance Problems 601
 The Gravity Problem 601
 The Straight-Line Distance Problem 602
 Problems for Section 10.10 603

10.11 Other Location Models 604
 Locating Multiple Facilities 605
 Further Extensions 606
 Problems for Section 10.11 608

10.12 Historical Notes 609

10.13 Summary 610
 Additional Problems on Layout and Location 611
 Spreadsheet Problems for Chapter 10 616

Appendix 10–A Finding Centroids 617
Appendix 10–B Computing Contour Lines 619

Bibliography 622

Chapter 11

Quality and Assurance 624

Chapter Overview 624
 Overview of This Chapter 628

11.1 Statistical Basis of Control Charts 629
 Problems for Section 11.1 631

11.2 Control Charts for Variables: The \bar{X} and R Charts 633
 \bar{X} Charts 636
 Relationship to Classical Statistics 636
 R Charts 638
 Problems for Section 11.2 639

11.3 Control Charts for Attributes:
 The p Chart 641
 p Charts for Varying Subgroup Sizes 643
 Problems for Section 11.3 644

11.4 The c Chart 646
 Problems for Section 11.4 648

11.5 Classical Statistical Methods and Control Charts 649
 Problem for Section 11.5 649

*11.6 Economic Design of \bar{X} Charts 650
 Problems for Section 11.6 656