TABLE OF CONTENTS

Preface iii
Third Edition Preface vii

Part One: Review and Background Material

Chapter 1 Review of Interest Theory 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Interest Measures</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Level Annuity Functions</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Immediate Annuity</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Annuity-due</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Continuous Annuity</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Non-Level Annuity Functions</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Immediate Annuities</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Annuities-due</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Continuous Annuities</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Equation of Value</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 2 Review of Probability 19

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Random Variables and Their Distributions</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Discrete Random Variables</td>
<td>20</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Continuous Random Variables</td>
<td>23</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Mixed Random Variables</td>
<td>25</td>
</tr>
<tr>
<td>2.1.4</td>
<td>More on Moments of Random Variables</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Survey of Particular Discrete Distributions</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The Discrete Uniform Distribution</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2</td>
<td>The Binomial Distribution</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The Negative Binomial Distribution</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The Geometric Distribution</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5</td>
<td>The Poisson Distribution</td>
<td>30</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Survey of Particular Continuous Distributions</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Continuous Uniform Distribution</td>
<td></td>
</tr>
<tr>
<td>2.3.2</td>
<td>The Normal Distribution</td>
<td></td>
</tr>
<tr>
<td>2.3.3</td>
<td>The Exponential Distribution</td>
<td></td>
</tr>
<tr>
<td>2.3.4</td>
<td>The Gamma Distribution</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Multivariate Probability</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>The Discrete Case</td>
<td></td>
</tr>
<tr>
<td>2.4.2</td>
<td>The Continuous Case</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Sums of Independent Random Variables</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>The Moments of S</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>Distributions Closed Under Convolution</td>
<td></td>
</tr>
<tr>
<td>2.5.3</td>
<td>The Method of Convolutions</td>
<td></td>
</tr>
<tr>
<td>2.5.4</td>
<td>Approximating the Distribution of S</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Compound Distributions</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>The Moments of S</td>
<td></td>
</tr>
<tr>
<td>2.6.2</td>
<td>The Compound Poisson Distribution</td>
<td></td>
</tr>
</tbody>
</table>

PART TWO: MODELS FOR SURVIVAL-CONTINGENT RISKS

CHAPTER 3

SURVIVAL MODELS (CONTINUOUS PARAMETRIC CONTEXT) 51

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Age-at-Failure Random Variable</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Cumulative Distribution Function of X</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Survival Distribution Function of X</td>
</tr>
<tr>
<td>3.1.3</td>
<td>The Probability Density Function of X</td>
</tr>
<tr>
<td>3.1.4</td>
<td>The Hazard Rate Function of X</td>
</tr>
<tr>
<td>3.1.5</td>
<td>The Moments of the Age-at-Failure Random Variable X</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Actuarial Survival Models</td>
</tr>
<tr>
<td>3.2</td>
<td>Examples of Parametric Survival Models</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Uniform Distribution</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The Exponential Distribution</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The Gompertz Distribution</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Makeham Distribution</td>
</tr>
<tr>
<td>3.2.5</td>
<td>The Weibull Distribution</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Summary of Parametric Survival Models</td>
</tr>
<tr>
<td>3.3</td>
<td>The Time-to-Failure Random Variable</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Survival Distribution Function of T_x</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Cumulative Distribution Function of T_x</td>
</tr>
</tbody>
</table>
3.3.3 The Probability Density Function of T_x 67
3.3.4 The Hazard Rate Function of T_x 68
3.3.5 Moments of the Future Lifetime Random Variable T_x 68
3.3.6 The Time-to-Failure Random Variable K_x 71
3.4 The Central Rate 73
3.5 Select Survival Models 75
3.6 Exercises 76

CHAPTER 4 THE LIFE TABLE (DISCRETE TABULAR CONTEXT) 81

4.1 Definition of the Life Table 81
4.2 The Traditional Form of the Life Table 83
4.3 Other Functions Derived from l_x 85
 4.3.1 The Force of Failure 86
 4.3.2 The Probability Density Function of X 88
 4.3.3 Conditional Probabilities and Densities 90
 4.3.4 The Curtate Expectation of Life 94
 4.3.5 The Central Rate 96
4.4 Summary of Concepts and Notation 97
4.5 Methods for Non-Integral Ages 97
 4.5.1 Linear Form for ℓ_{x+t} 100
 4.5.2 Exponential Form for ℓ_{x+t} 104
 4.5.3 Hyperbolic Form for ℓ_{x+t} 106
 4.5.4 Summary 108
4.6 Select Life Tables 109
4.7 Life Table Summary 112
4.8 Exercises 113

CHAPTER 5 CONTINGENT PAYMENT MODELS (INSURANCE MODELS) 121

5.1 Discrete Stochastic Models 122
 5.1.1 The Discrete Random Variable for Time of Failure 122
 5.1.2 The Present Value Random Variable 122
 5.1.3 Modifications of the Present Value Random Variable 126
 5.1.4 Applications to Life Insurance 131
5.2 Group Deterministic Approach 135
5.3 Continuous Stochastic Models 138
5.3.1 The Continuous Random Variable for Time to Failure 138
5.3.2 The Present Value Random Variable 139
5.3.3 Modifications of the Present Value Random Variable 141
5.3.4 Applications to Life Insurance 141
5.3.5 Continuous Functions Evaluated from Parametric Survival Models 142
5.4 Contingent Payment Models with Varying Payments 145
5.5 Continuous and m^{thly} Functions Approximated from the Life Table 148
5.5.1 Continuous Contingent Payment Models 148
5.5.2 m^{thly} Contingent Payment Models 151
5.6 Miscellaneous Examples 153
5.7 Exercises 156

CHAPTER 6 CONTINGENT ANNUITY MODELS (LIFE ANNUITIES) 161
6.1 Whole Life Annuity Models 162
6.1.1 The Immediate Case 163
6.1.2 The Due Case 169
6.1.3 The Continuous Case 171
6.2 Temporary Annuity Models 174
6.2.1 The Immediate Case 174
6.2.2 The Due Case 179
6.2.3 The Continuous Case 182
6.3 Deferred Whole Life Annuity Models 185
6.3.1 The Immediate Case 185
6.3.2 The Due Case 187
6.3.3 The Continuous Case 188
6.4 Contingent Annuities Payable m^{thly} 191
6.4.1 The Immediate Case 191
6.4.2 The Due Case 192
6.4.3 Random Variable Analysis 193
6.4.4 Numerical Evaluation in the m^{thly} and Continuous Cases 195
6.5 Non-Level Payment Annuity Functions 197
6.6 Miscellaneous Examples 198
6.7 Exercises 203
Table of Contents

Chapter 7 Funding Plans for Contingent Contracts (Annual Premiums) 211

7.1 Annual Funding Schemes for Contingent Payment Models 212
 7.1.1 Discrete Contingent Payment Models 212
 7.1.2 Continuous Contingent Payment Models 217
 7.1.3 Contingent Annuity Models 218
 7.1.4 Non-Level Premium Contracts 218

7.2 Random Variable Analysis 219

7.3 Continuous Payment Funding Schemes 224
 7.3.1 Discrete Contingent Payment Models 224
 7.3.2 Continuous Contingent Payment Models 225

7.4 Funding Schemes with m^{th} Payments 228

7.5 Funding Plans Incorporating Expenses 230

7.6 Miscellaneous Examples 233

7.7 Exercises 240

Chapter 8 Contingent Contract Reserves (Benefit Reserves) 245

8.1 Reserves for Contingent Payment Models with Annual Payment Funding 247
 8.1.1 Reserves by the Prospective Method 247
 8.1.2 Reserves by the Retrospective Method 250
 8.1.3 Additional Terminal Reserve Expressions 253
 8.1.4 Random Variable Analysis 255
 8.1.5 Reserve for Contingent Contracts with Immediate Payment of Claims 257
 8.1.6 Reserves for Contingent Annuity Models 258

8.2 Recursive Relationships for Discrete Models with Annual Premiums 259
 8.2.1 Group Deterministic Approach 259
 8.2.2 Random Variable Analysis – Cash Basis 263
 8.2.3 Random Variable Analysis – Accrued Basis 266

8.3 Reserves for Contingent Payment Models with Continuous Payment Funding 270
 8.3.1 Discrete Whole Life Contingent Payment Models 270
 8.3.2 Continuous Whole Life Contingent Payment Models 271
 8.3.3 Random Variable Analysis 275
TABLE OF CONTENTS

8.4 Reserves for Contingent Payment Models with m^{thly} Payment Funding 276
8.5 Incorporation of Expenses 279
8.6 Reserves at Fractional Durations 280
8.7 Generalization to Non-Level Benefits and Premiums 282
 8.7.1 Discrete Models 282
 8.7.2 Continuous Models 286
8.8 Miscellaneous Examples 288
8.9 Exercises 292

CHAPTER 9 Models Dependent on Multiple Survivals
(Multi-Life Models) 299

9.1 The Joint-Life Model 299
 9.1.1 The Time-to-Failure Random Variable for a Joint-Life Status 300
 9.1.2 Survival Distribution Function of T_{xy} 300
 9.1.3 Cumulative Distribution Function of T_{xy} 300
 9.1.4 Probability Density Function of T_{xy} 302
 9.1.5 Hazard Rate Function of T_{xy} 303
 9.1.6 Conditional Probabilities 303
 9.1.7 Moments of T_{xy} 305
9.2 The Last-Survivor Model 306
 9.2.1 The Time-to-Failure Random Variable for a Last-Survivor Status 306
 9.2.2 Functions of the Random Variable T_{xy} 307
 9.2.3 Relationships Between T_{xy} and T_{xy} 310
9.3 Contingent Probability Functions 311
9.4 Contingent Contracts Involving Multi-Life Statuses 314
 9.4.1 Contingent Payment Models 314
 9.4.2 Contingent Annuity Models 316
 9.4.3 Annual Premiums and Reserves 317
 9.4.4 Reversionary Annuities 319
 9.4.5 Contingent Insurance Functions 321
9.5 General Random Variable Analysis 322
 9.5.1 Marginal Distributions of T_x and T_y 322
 9.5.2 The Covariance of T_x and T_y 323
 9.5.3 Other Joint Functions of T_x and T_y 325
 9.5.4 Joint and Last-Survivor Status Functions 328
9.6 Common Shock – A Model for Lifetime Dependency 330
9.7 Exercises 333
TABLE OF CONTENTS

CHAPTER 10 MULTIPLE CONTINGENCIES WITH APPLICATIONS (MULTIPLE-DECREMENT MODELS) 339

10.1 Discrete Multiple-Decrement Models 339
10.1.1 The Multiple-Decrement Table 341
10.1.2 Random Variable Analysis 344
10.2 Theory of Competing Risks 346
10.3 Continuous Multiple-Decrement Models 347
10.4 Uniform Distribution of Decrement 352
10.4.1 Uniform Distribution in the Multiple-Decrement Context 352
10.4.2 Uniform Distribution in the Associated Single-Decrement Tables 354
10.5 Actuarial Present Value 357
10.6 Asset Shares 363
10.7 Multi-State Models 366
10.7.1 The Homogeneous Process 366
10.7.2 The Nonhomogeneous Process 372
10.8 Exercises 374

PART THREE:
MODELS FOR NON-SURVIVAL-CONTINGENT RISKS

CHAPTER 11 CLAIM FREQUENCY MODELS 383

11.1 Section 2.2 (Discrete Distributions) Revisited 383
11.1.1 The Binomial Distribution 383
11.1.2 The Poisson Distribution 384
11.1.3 The Negative Binomial Distribution 389
11.1.4 The Geometric Distribution 393
11.1.5 Summary of the Recursive Relationships 393
11.1.6 Probability Generating Functions 394
11.2 Creating Additional Counting Distributions 397
11.2.1 Compound Frequency Models 397
11.2.2 Mixture Frequency Models 402
11.2.3 Truncation or Modification at Zero 405
11.3 Counting Processes 409
11.3.1 Properties of Counting Processes 410
11.3.2 The Poisson Counting Process 411
11.3.3 Further Properties of the Poisson Counting Process 412
11.3.4 Poisson Mixture Processes 415
11.3.5 The Nonstationary Poisson Counting Process 415
11.4 Exercises 418

CHAPTER 12 CLAIM SEVERITY MODELS 425

12.1 Fundamental Continuous Distributions 426
12.1.1 The Normal and Exponential Distributions 426
12.1.2 The Pareto Distribution 426
12.1.3 Analytic Measures of Tail Weight 429
12.2 Generating New Distributions 431
12.2.1 Summation 431
12.2.2 Scalar Multiplication 431
12.2.3 Power Operations 434
12.2.4 Exponentiation and the Lognormal Distribution 437
12.2.5 Summary of Severity Distributions 439
12.2.6 Mixtures of Distributions 442
12.2.7 Spliced Distributions 448
12.2.8 Limiting Distributions 450
12.3 Modifications of the Loss Random Variable 451
12.3.1 Deductibles 452
12.3.2 Policy Limits 454
12.3.3 Relationships between Deductibles and Policy Limits 457
12.3.4 Coinsurance Factors 460
12.3.5 The Effect of Inflation 461
12.3.6 Effect of Coverage Deductibles on Frequency Models 463
12.4 Tail Weight Revisited; Risk Measures 470
12.4.1 The Mean Excess Loss Function 471
12.4.2 Conditional Tail Expectation 474
12.4.3 Value at Risk 475
12.4.4 Distortion Risk Measures 476
12.4.5 Risk Measures Using Discrete Distributions 479
12.4.6 Other Risk Measures 481
12.5 Empirical Loss Distributions 481
12.6 Exercises 485
Table of Contents

Chapter 13 Models for Aggregate Payments 495

13.1 Individual Risk versus Collective Risk 495
13.2 Selection of Frequency and Severity Distributions 499
13.2.1 Frequency 499
13.2.2 Severity 500
13.2.3 Frequency-Severiry Interaction 501
13.3 More on the Collective Risk Model 502
13.3.1 Convolutions of the Probability Function of X 502
13.3.2 Convolutions of the CDF of X 508
13.3.3 Continuous Severity Distributions 512
13.3.4 A Final Thought Regarding Convolutions 519
13.4 Effect of Coverage Modifications 520
13.4.1 Modifications Applied to Individual Losses 521
13.4.2 Modifications Applied to the Aggregate Loss (Stop-Loss Reinsurance) 523
13.5 Infinitely Divisible Distributions 528
13.5.1 Definition of Infinite Divisibility 528
13.5.2 The Poisson Distribution 529
13.5.3 The Negative Binomial Distribution 529
13.6 Exercises 529

Chapter 14 Process Models 537

14.1 The Compound Poisson Process 537
14.1.1 Moments of the Compound Poisson Process 538
14.1.2 Other Properties of the Compound Poisson Process 539
14.2 The Surplus Process Model 540
14.3 The Probability of Ruin 543
14.3.1 The Adjustment Coefficient 544
14.3.2 The Probability of Ruin 547
14.4 The Distribution of Surplus Deficit 550
14.4.1 The Event of $U(t) < u$ 550
14.4.2 The Cumulative Loss of Surplus 553
14.5 Probability of Ruin in Finite Time 557
14.6 Exercises 558
APPENDIX A REVIEW OF MARKOV CHAINS 565
APPENDIX B REVIEW OF STOCHASTIC SIMULATION 587
APPENDIX C EVALUATION BY SIMULATION 605
APPENDIX D USING MICROSOFT EXCEL AND VISUAL BASIC
 MACROS TO COMPUTE ACTUARIAL FUNCTIONS 625
APPENDIX E REVIEW OF THE INCOMPLETE GAMMA FUNCTION 641

ANSWERS TO TEXT EXERCISES 649

BIBLIOGRAPHY 671

INDEX 673