CONTENTS

FRONTIERS OF ECONOMICS AND GLOBALIZATION v

LIST OF CONTRIBUTORS (IN ALPHABETICAL ORDER) vii

EDITORS' INTRODUCTION xxii

David E. Rapach and Mark E. Wohar

Acknowledgments xxvi

References xxvi

PART I: MACROECONOMIC FORECASTING 1

CHAPTER 1 FORECASTING ANNUAL UK INFLATION USING AN ECONOMETRIC MODEL OVER 1875–1991 3

Michael P. Clements and David F. Hendry

1 Introduction 3
2 Aspects of a general theory of forecasting 7
 2.1 Structural breaks 8
 2.2 Robustifying forecasts against structural breaks 9
 2.3 Other implications 12
3 The model of UK inflation 14
 3.1 The data series 14
 3.2 Feedback relations 15
 3.3 The selected model 16
4 Individual forecasting methods 17
 4.1 1982–1991 18
 4.2 Combined forecasting methods 22
5 Summary comparisons 24
 5.1 "Forecasting" 1982–1991 25
 5.2 "Forecasting" 1972–1981 27
6 Policy implications 28
7 Conclusions 29
Acknowledgments 30
Appendix A: Data definitions 30
Contents

Appendix B: Model estimates 32
Lagged variants of the selected full-sample model 32
\emph{PcGets} forecasting models 32
References 33

CHAPTER 2 FORECASTING UK INFLATION:
THE ROLES OF STRUCTURAL BREAKS
AND TIME DISAGGREGATION 41

\textit{Jennifer L. Castle and David F. Hendry}

1. Introduction 41
2. Quarterly models of UK inflation 43
 2.1 Data 44
 2.2 Single-equation equilibrium-correction models 47
 2.3 Vector equilibrium-correction models 49
3. Quarterly forecasting models 51
 3.1 Direct versus iterated forecasts 54
 3.2 Forecast evaluation criteria 55
4. Quarterly inflation forecasts 56
 4.1 Forecasting results 57
 4.2 Ranking of forecasting models 64
5. Forecasting annual inflation 65
 5.1 Disaggregating forecasts over time 67
 5.2 DDD taxonomy 74
6. Annual forecasting models 76
 6.1 Models of annual inflation 77
 6.2 Quarterly model of annual inflation 78
 6.3 Quarterly inflation model used to forecast 1-year-ahead inflation 79
7. Annual inflation forecasts 80
8. Conclusions 83
 Acknowledgements 84
 Appendix A 84
 A.1 Automatic \emph{Gets} selection 84
 A.2 Forecasting models 86
 References 89

CHAPTER 3 FORECASTING WITH SMALL
MACROECONOMIC VARS IN
THE PRESENCE OF INSTABILITIES 93

\textit{Todd E. Clark and Michael W. McCracken}

1. Introduction 93
2. Methods used 95
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Data and model details</td>
<td>106</td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
<td>109</td>
</tr>
<tr>
<td>4.1</td>
<td>Forecast accuracy</td>
<td>110</td>
</tr>
<tr>
<td>4.2</td>
<td>Long-run forecasts</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>143</td>
</tr>
</tbody>
</table>

CHAPTER 4
FORECASTING MACROECONOMIC VARIABLES USING DIFFUSION INDEXES IN SHORT SAMPLES WITH STRUCTURAL CHANGE
Anindya Banerjee, Massimiliano Marcellino and Igor Masten

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>2</td>
<td>Methodology</td>
<td>151</td>
</tr>
<tr>
<td>2.1</td>
<td>Forecasting models</td>
<td>152</td>
</tr>
<tr>
<td>2.2</td>
<td>Forecast comparison</td>
<td>154</td>
</tr>
<tr>
<td>3</td>
<td>Monte Carlo experiments</td>
<td>154</td>
</tr>
<tr>
<td>3.1</td>
<td>Design of experiments</td>
<td>155</td>
</tr>
<tr>
<td>3.2</td>
<td>Results</td>
<td>158</td>
</tr>
<tr>
<td>3.3</td>
<td>Explaining the good performance of AR forecasts</td>
<td>168</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>Two empirical examples</td>
<td>171</td>
</tr>
<tr>
<td>4.1</td>
<td>Data</td>
<td>171</td>
</tr>
<tr>
<td>4.2</td>
<td>Forecasting results for the Euro area</td>
<td>172</td>
</tr>
<tr>
<td>4.3</td>
<td>Forecasting results for Slovenia</td>
<td>185</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary</td>
<td>189</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>192</td>
</tr>
</tbody>
</table>

CHAPTER 5
PREDICTIVE INFERENCE UNDER MODEL MISSPECIFICATION
Nii Ayi Armah and Norman R. Swanson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>Block bootstraps for recursive and rolling m-estimators</td>
<td>199</td>
</tr>
<tr>
<td>2.1</td>
<td>Recursive estimation window</td>
<td>199</td>
</tr>
<tr>
<td>2.2</td>
<td>Rolling estimation window</td>
<td>203</td>
</tr>
<tr>
<td>3</td>
<td>The CS test</td>
<td>205</td>
</tr>
<tr>
<td>4</td>
<td>Monte Carlo experiments</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>Empirical illustration: the marginal predictive content of money for output</td>
<td>220</td>
</tr>
</tbody>
</table>
CHAPTER 6 FORECASTING PERSISTENT DATA
WITH POSSIBLE STRUCTURAL BREAKS:
OLD SCHOOL AND NEW SCHOOL LESSONS
USING OECD UNEMPLOYMENT RATES

Walter Enders and Ruxandra Prodan

6 Concluding remarks 227
Acknowledgments 228
References 228

CHAPTER 7 WHAT CAN WE LEARN FROM
COMPREHENSIVE DATA REVISIONS
FOR FORECASTING INFLATION?
SOME US EVIDENCE

Pierre L. Siklos

1 Introduction 231
2 Forecasting with structural breaks 232
3 Time-series properties of the unemployment rates 237
4 Specifics of the estimated models 243
 4.1 “Old School” models 243
 4.2 “New School” models 244
 4.3 Nonlinear models: TAR and M-TAR 246
5 Comparative performance of the models 247
 5.1 Forecast performance of the models with an expanding window 248
 5.2 New School methods using only post-break data 250
 5.3 Forecasting performance of the TAR and M-TAR models 251
 5.4 Forecasting performance with intercept corrections 252
 5.5 Encompassing: combining Old School and New School models 254
6 Conclusion 256
Appendix A 257
References 268
PART II: FINANCIAL FORECASTING

CHAPTER 8 ESTIMATING AND FORECASTING GARCH MODELS IN THE PRESENCE OF STRUCTURAL BREAKS AND REGIME SWITCHES

Eric Hillebrand and Marcelo C. Medeiros

1 Introduction 303
2 The statistical consequences of neglecting parameter changes 305
3 The flexible coefficient GARCH(1, 1) model 309
 3.1 Overview 309
 3.2 Parameter estimation 312
 3.3 Determining the number of regimes 313
4 Forecast comparison of locally stationary GARCH(1, 1) vs. FCGARCH(M) models 316
 4.1 Data 316
 4.2 Local GARCH(1, 1) models 317
 4.3 FCGARCH(1, 1) models 317
 4.4 Forecast comparison 321
5 Conclusion 324
References 324

CHAPTER 9 A SOURCE OF LONG MEMORY IN VOLATILITY

Namwon Hyung, Ser-Huang Poon and Clive W.J. Granger

1 Introduction 329
2 How much volatility memory is there? 332
3 Long-memory volatility models 336
 3.1 FI(E)GARCH models 336
 3.2 Breaks and structural change 338
 3.3 Volatility regime-switching model 339
4 Empirical study 340
 4.1 Short-memory models 341
 4.2 Estimation 342
 4.3 Out-of-sample forecasts 344
 4.4 Forecast evaluation 350
 4.5 Results 351
5 The case for volatility breaks 363
 5.1 Economic significance 363
 5.2 International evidence 366
 5.3 Causes of volatility breaks 369
 5.4 Distinguishing breaks and jumps 372
6 Conclusion 373
CHAPTER 10 FORECASTING STOCK RETURN VOLATILITY IN THE PRESENCE OF STRUCTURAL BREAKS
David E. Rapach, Jack K. Strauss and Mark E. Wohar

1 Introduction 381
2 Econometric methodology 385
 2.1 Modified iterative cumulative sum of squares algorithm 385
 2.2 GJR-GARCH model 386
 2.3 In-sample tests 387
 2.4 Forecasting models 388
 2.5 Combination forecasts 390
 2.6 Forecast evaluation 392
3 Empirical results 393
 3.1 Data 393
 3.2 In-sample results 395
 3.3 Out-of-sample results 402
4 Conclusion 412
Acknowledgments 413
References 414

CHAPTER 11 FINANCIAL TIME SERIES AND VOLATILITY PREDICTION USING NOVAS TRANSFORMATIONS
Dimitris N. Politis and Dimitrios D. Thomakos

1 Introduction 417
2 NoVaS transformation and implied distributions 419
3 NoVaS distributional matching 425
 3.1 Parametrization 425
 3.2 Objective functions for optimization 427
4 NoVaS forecasting 430
5 Empirical examples 432
 5.1 Data, data-generating processes, and summary statistics 432
 5.2 NoVaS optimization and forecasting specifications 434
 5.3 Discussion of results 438
6 Concluding remarks 444
Acknowledgments 445
References 446
CHAPTER 12 MODELING FOREIGN EXCHANGE RATES WITH JUMPS

John M. Maheu and Thomas H. McCurdy

1 Introduction 449
2 Basic jump model 452
 2.1 Heterogeneous jump parameterization 452
3 Benchmark specifications 453
 3.1 SV model 453
 3.2 GARCH model 454
4 Posterior inference 454
5 Model comparison 455
 5.1 Calculations 457
6 Volatility forecasts 459
 6.1 Calculations 459
7 Data 460
8 Results 461
9 Conclusions 468
 Acknowledgements 468
 Appendix A 469
 A.1 Jump model 469
 A.2 SV model 471
 A.3 GARCH model 472
References 472

CHAPTER 13 BAGGING BINARY AND QUANTILE PREDICTORS FOR TIME SERIES: FURTHER ISSUES

Tae-Hwy Lee and Yang Yang

1 Introduction 478
2 What is bagging? 480
3 Bagging with different averaging schemes 482
4 Bagging multi-step quantile forecasts 497
5 Bagging quantile forecasts with different tick losses 516
6 Bagging quantile forecasts with different estimation algorithms 519
7 Bagging quantile forecasts with different quantile regression models 521
8 Bagging binary and quantile forecasts in different frequencies 526
9 Pretesting and bagging 526
10 Summary and conclusion 530
 Acknowledgements 532
 References 532
CHAPTER 14 FORECASTING INTEREST RATES:
AN APPLICATION OF THE STOCHASTIC
UNIT ROOT AND STOCHASTIC
COINTEGRATION FRAMEWORKS 535

Robert Sollis

1 Introduction 535
2 Stochastic unit roots, heteroscedastic integration and stochastic
cointegration 538
 2.1 Stochastic unit roots 538
 2.2 Testing for a STUR 541
 2.3 Heteroscedastic integration, stochastic cointegration and
 heteroscedastic cointegration 542
3 Data, unit root tests and STUR results 546
 3.1 Data 546
 3.2 Unit root test results 546
 3.3 Estimated STUR models and forecasts 548
4 HI, SC and HC test results 552
5 SC forecasting results 554
6 Conclusions 555
References 557

CHAPTER 15 BAYESIAN MODEL AVERAGING IN THE
PRESENCE OF STRUCTURAL BREAKS 561

Francesco Ravazzolo, Richard Paap, Dick van Dijk
and Philip Hans Franses

1 Introduction 561
2 Methodology 563
 2.1 The model 563
 2.2 Prior specification and posterior simulation 565
 2.3 Using the posterior results 567
3 Model uncertainty and structural breaks in return forecasting
models for the S&P 500 569
 3.1 Data 569
 3.2 Prior specification 570
 3.3 Full-sample estimation results 570
4 Active investment strategies allowing for model uncertainty and
structural breaks 579
 4.1 A utility-based performance measure 579
 4.2 Empirical results 582
5 Conclusion 590
Acknowledgements 592
References 592
CHAPTER 16 THE ECONOMIC AND STATISTICAL VALUE OF FORECAST COMBINATIONS UNDER REGIME SWITCHING: AN APPLICATION TO PREDICTABLE US RETURNS Massimo Guidolin and Carrie Fangzhou Na

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>595</td>
</tr>
<tr>
<td>2 Models</td>
<td>599</td>
</tr>
<tr>
<td>3 Data</td>
<td>602</td>
</tr>
<tr>
<td>4 Econometric estimates</td>
<td>604</td>
</tr>
<tr>
<td>4.1 Model selection</td>
<td>604</td>
</tr>
<tr>
<td>4.2 A four-state model</td>
<td>608</td>
</tr>
<tr>
<td>5 Forecasting performance</td>
<td>618</td>
</tr>
<tr>
<td>5.1 Mean square forecast error results</td>
<td>620</td>
</tr>
<tr>
<td>5.2 Testing differential predictive accuracy</td>
<td>623</td>
</tr>
<tr>
<td>6 Are forecast combinations useful? Statistical evidence</td>
<td>628</td>
</tr>
<tr>
<td>6.1 The forecast combination problem</td>
<td>629</td>
</tr>
<tr>
<td>6.2 Recursive estimates of combination weights</td>
<td>631</td>
</tr>
<tr>
<td>6.3 Statistical tests</td>
<td>633</td>
</tr>
<tr>
<td>7 The economic value of forecast combinations: portfolio implications</td>
<td>638</td>
</tr>
<tr>
<td>7.1 Recursive portfolio weights</td>
<td>640</td>
</tr>
<tr>
<td>7.2 Out-of-sample portfolio performance</td>
<td>641</td>
</tr>
<tr>
<td>7.3 Sub-sample performance</td>
<td>646</td>
</tr>
<tr>
<td>7.4 Transaction costs</td>
<td>646</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>649</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>651</td>
</tr>
<tr>
<td>References</td>
<td>651</td>
</tr>
</tbody>
</table>

SUBJECT INDEX 657