Contents

Preface xi
Acknowledgement xiii

1 Introduction and Notation 1
1.1 Claims process 1
 1.1.1 Accounting principles and accident years 2
 1.1.2 Inflation 3
1.2 Structural framework to the claims-reserving problem 5
 1.2.1 Fundamental properties of the claims reserving process 7
 1.2.2 Known and unknown claims 9
1.3 Outstanding loss liabilities, classical notation 10
1.4 General remarks 12

2 Basic Methods 15
2.1 Chain-ladder method (distribution-free) 15
2.2 Bornhuetter–Ferguson method 21
2.3 Number of IBNyR claims, Poisson model 25
2.4 Poisson derivation of the CL algorithm 27

3 Chain-Ladder Models 33
3.1 Mean square error of prediction 33
3.2 Chain-ladder method 36
 3.2.1 Mack model (distribution-free CL model) 37
 3.2.2 Conditional process variance 41
 3.2.3 Estimation error for single accident years 44
 3.2.4 Conditional MSEP, aggregated accident years 55
3.3 Bounds in the unconditional approach 58
 3.3.1 Results and interpretation 58
 3.3.2 Aggregation of accident years 63
 3.3.3 Proof of Theorems 3.17, 3.18 and 3.20 64
3.4 Analysis of error terms in the CL method 70
 3.4.1 Classical CL model 70
 3.4.2 Enhanced CL model 71
 3.4.3 Interpretation 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4</td>
<td>CL estimator in the enhanced model</td>
<td>73</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Conditional process and parameter prediction errors</td>
<td>74</td>
</tr>
<tr>
<td>3.4.6</td>
<td>CL factors and parameter estimation error</td>
<td>75</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Parameter estimation</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Bayesian Models</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Benktander–Hovinen method and Cape–Cod model</td>
<td>91</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Benktander–Hovinen method</td>
<td>92</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Cape–Cod model</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Credible claims reserving methods</td>
<td>98</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Minimizing quadratic loss functions</td>
<td>98</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Distributional examples to credible claims reserving</td>
<td>101</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Log-normal/Log-normal model</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Exact Bayesian models</td>
<td>113</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Overdispersed Poisson model with gamma prior distribution</td>
<td>114</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Exponential dispersion family with its associated conjugates</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Markov chain Monte Carlo methods</td>
<td>131</td>
</tr>
<tr>
<td>4.5</td>
<td>Bühlmann–Straub credibility model</td>
<td>145</td>
</tr>
<tr>
<td>4.6</td>
<td>Multidimensional credibility models</td>
<td>154</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Hachemeister regression model</td>
<td>155</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Other credibility models</td>
<td>159</td>
</tr>
<tr>
<td>4.7</td>
<td>Kalman filter</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>Distributional Models</td>
<td>167</td>
</tr>
<tr>
<td>5.1</td>
<td>Log-normal model for cumulative claims</td>
<td>167</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Known variances σ_j^2</td>
<td>170</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Unknown variances</td>
<td>177</td>
</tr>
<tr>
<td>5.2</td>
<td>Incremental claims</td>
<td>182</td>
</tr>
<tr>
<td>5.2.1</td>
<td>(Overdispersed) Poisson model</td>
<td>182</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Negative-Binomial model</td>
<td>183</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Log-normal model for incremental claims</td>
<td>185</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Gamma model</td>
<td>186</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Tweedie’s compound Poisson model</td>
<td>188</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Wright’s model</td>
<td>199</td>
</tr>
<tr>
<td>6</td>
<td>Generalized Linear Models</td>
<td>201</td>
</tr>
<tr>
<td>6.1</td>
<td>Maximum likelihood estimators</td>
<td>201</td>
</tr>
<tr>
<td>6.2</td>
<td>Generalized linear models framework</td>
<td>203</td>
</tr>
<tr>
<td>6.3</td>
<td>Exponential dispersion family</td>
<td>205</td>
</tr>
<tr>
<td>6.4</td>
<td>Parameter estimation in the EDF</td>
<td>208</td>
</tr>
<tr>
<td>6.4.1</td>
<td>MLE for the EDF</td>
<td>208</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Fisher’s scoring method</td>
<td>210</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Mean square error of prediction</td>
<td>214</td>
</tr>
<tr>
<td>6.5</td>
<td>Other GLM models</td>
<td>223</td>
</tr>
<tr>
<td>6.6</td>
<td>Bornhuetter–Ferguson method, revisited</td>
<td>223</td>
</tr>
<tr>
<td>6.6.1</td>
<td>MSEP in the BF method, single accident year</td>
<td>226</td>
</tr>
<tr>
<td>6.6.2</td>
<td>MSEP in the BF method, aggregated accident years</td>
<td>230</td>
</tr>
</tbody>
</table>
Contents

7 Bootstrap Methods
7.1 Introduction
7.1.1 Efron’s non-parametric bootstrap
7.1.2 Parametric bootstrap
7.2 Log-normal model for cumulative sizes
7.3 Generalized linear models
7.4 Chain-ladder method
7.4.1 Approach 1: Unconditional estimation error
7.4.2 Approach 3: Conditional estimation error
7.5 Mathematical thoughts about bootstrapping methods
7.6 Synchronous bootstrapping of seemingly unrelated regressions

8 Multivariate Reserving Methods
8.1 General multivariate framework
8.2 Multivariate chain-ladder method
8.2.1 Multivariate CL model
8.2.2 Conditional process variance
8.2.3 Conditional estimation error for single accident years
8.2.4 Conditional MSEP, aggregated accident years
8.2.5 Parameter estimation
8.3 Multivariate additive loss reserving method
8.3.1 Multivariate additive loss reserving model
8.3.2 Conditional process variance
8.3.3 Conditional estimation error for single accident years
8.3.4 Conditional MSEP, aggregated accident years
8.3.5 Parameter estimation
8.4 Combined Multivariate CL and ALR method
8.4.1 Combined CL and ALR method: the model
8.4.2 Conditional cross process variance
8.4.3 Conditional cross estimation error for single accident years
8.4.4 Conditional MSEP, aggregated accident years
8.4.5 Parameter estimation

9 Selected Topics I: Chain-Ladder Methods
9.1 Munich chain-ladder
9.1.1 The Munich chain-ladder model
9.1.2 Credibility approach to the MCL method
9.1.3 MCL Parameter estimation
9.2 CL Reserving: A Bayesian inference model
9.2.1 Prediction of the ultimate claim
9.2.2 Likelihood function and posterior distribution
9.2.3 Mean square error of prediction
9.2.4 Credibility chain-ladder
9.2.5 Examples
9.2.6 Markov chain Monte Carlo methods
10 Selected Topics II: Individual Claims Development Processes 369
 10.1 Modelling claims development processes for individual claims 369
 10.1.1 Modelling framework 370
 10.1.2 Claims reserving categories 376
 10.2 Separating IBNeR and IBNyR claims 379

11 Statistical Diagnostics 391
 11.1 Testing age-to-age factors 391
 11.1.1 Model choice 394
 11.1.2 Age-to-age factors 396
 11.1.3 Homogeneity in time and distributional assumptions 398
 11.1.4 Correlations 399
 11.1.5 Diagonal effects 401
 11.2 Non-parametric smoothing 401

Appendix A: Distributions 405
 A.1 Discrete distributions 405
 A.1.1 Binomial distribution 405
 A.1.2 Poisson distribution 405
 A.1.3 Negative-Binomial distribution 405
 A.2 Continuous distributions 406
 A.2.1 Uniform distribution 406
 A.2.2 Normal distribution 406
 A.2.3 Log-normal distribution 407
 A.2.4 Gamma distribution 407
 A.2.5 Beta distribution 408

Bibliography 409

Index 417