Contents

PART 1

INTRODUCTION

1. **MODERN QUALITY MANAGEMENT AND IMPROVEMENT**

Chapter Overview and Learning Objectives 3
1.1 The Meaning of Quality and Quality Improvement
 1.1.1 Dimensions of Quality 4
 1.1.2 Quality Engineering Terminology 8
1.2 A Brief History of Quality Control and Improvement 9
1.3 Statistical Methods for Quality Control and Improvement 13
1.4 Management Aspects of Quality Improvement
 1.4.1 Quality Philosophy and Management Strategies 16
 1.4.2 The Link Between Quality and Productivity 35
 1.4.3 Quality Costs 36
 1.4.4 Legal Aspects of Quality 41
 1.4.5 Implementing Quality Improvement 42

THE DMAIC PROBLEM SOLVING PROCESS

Chapter Overview and Learning Objectives 45
2.1 Overview of DMAIC 45
2.2 The Define Step 49
2.3 The Measure Step 50
2.4 The Analyze Step 52
2.5 The Improve Step 53
2.6 The Control Step 54
2.7 Examples of DMAIC
 2.7.1 Litigation Documents 54
 2.7.2 Improving On-Time Delivery 56
 2.7.3 Improving Service Quality in a Bank 59

PART 2

STATISTICAL METHODS USEFUL IN QUALITY CONTROL AND IMPROVEMENT

Chapter Overview and Learning Objectives 61
3.1 Describing Variation
 3.1.1 The Stem-and-Leaf Plot 64
 3.1.2 The Histogram 66
 3.1.3 Numerical Summary of Data 69
 3.1.4 The Box Plot 71
 3.1.5 Probability Distributions 72
3.2 Important Discrete Distributions
 3.2.1 The Hypergeometric Distribution 76
 3.2.2 The Binomial Distribution 77
 3.2.3 The Poisson Distribution 79
 3.2.4 The Pascal and Related Distributions 80
3.3 Important Continuous Distributions
 3.3.1 The Normal Distribution 81
 3.3.2 The Lognormal Distribution 86
 3.3.3 The Exponential Distribution 88
 3.3.4 The Gamma Distribution 89
 3.3.5 The Weibull Distribution 91
3.4 Probability Plots
 3.4.1 Normal Probability Plots 93
 3.4.2 Other Probability Plots 95
3.5 Some Useful Approximations
 3.5.1 The Binomial Approximation to the Hypergeometric 96
3.5.2 The Poisson Approximation to the Binomial 96
3.5.3 The Normal Approximation to the Binomial 97
3.5.4 Comments on Approximations 98

PART 3
BASIC METHODS OF STATISTICAL PROCESS CONTROL AND CAPABILITY ANALYSIS 177

5
HOW SPC WORKS 179

Chapter Overview and Learning Objectives 179
5.1 Introduction 180
5.2 Chance and Assignable Causes of Quality Variation 181
5.3 Statistical Basis of the Control Chart 182
 5.3.1 Basic Principles 182
 5.3.2 Choice of Control Limits 189
 5.3.3 Sample Size and Sampling Frequency 191
 5.3.4 Rational Subgroups 193
 5.3.5 Analysis of Patterns on Control Charts 195
 5.3.6 Discussion of Sensitizing Rules for Control Charts 197
 5.3.7 Phase I and Phase II of Control Chart Application 198
5.4 The Rest of the Magnificent Seven 199
5.5 Implementing SPC in a Quality Improvement Program 205
5.6 An Application of SPC 206
5.7 Applications of Statistical Process Control and Quality Improvement Tools in Transactional and Service Businesses 213

6
VARIABLES CONTROL CHARTS 226

Chapter Overview and Learning Objectives 226
6.1 Introduction 227
6.2 Control Charts for \(\bar{x} \) and \(R \) 228
 6.2.1 Statistical Basis of the Charts 228
Contents

6.2.2 Development and Use of \(\bar{x} \) and \(R \) Charts 231
6.2.3 Charts Based on Standard Values 242
6.2.4 Interpretation of \(\bar{x} \) and \(R \) Charts 243
6.2.5 The Effect of Nonnormality on \(\bar{x} \) and \(R \) Charts 246
6.2.6 The Operating-Characteristic Function 246
6.2.7 The Average Run Length for the \(\bar{x} \) Chart 249
6.3 Control Charts for \(\bar{x} \) and \(s \) 251
6.3.1 Construction and Operation of \(\bar{x} \) and \(s \) Charts 251
6.3.2 The \(\bar{x} \) and \(s \) Control Charts with Variable Sample Size 255
6.3.3 The \(s^2 \) Control Chart 259
6.4 The Shewhart Control Chart for Individual Measurements 259
6.5 Summary of Procedures for \(\bar{x} \), \(R \), and \(s \) Charts 268
6.6 Applications of Variables Control Charts 268

7 ATTRIBUTES CONTROL CHARTS 288

Chapter Overview and Learning Objectives 288
7.1 Introduction 289
7.2 The Control Chart for Fraction Nonconforming 289
7.2.1 Development and Operation of the Control Chart 290
7.2.2 Variable Sample Size 301
7.2.3 Applications in Transactional and Service Businesses 304
7.2.4 The Operating-Characteristic Function and Average Run Length Calculations 306
7.3 Control Charts for Nonconformities (Defects) 308
7.3.1 Procedures with Constant Sample Size 309
7.3.2 Procedures with Variable Sample Size 319
7.3.3 Demerit Systems 321
7.3.4 The Operating-Characteristic Function 322

7.4 Choice Between Attributes and Variables Control Charts 326
7.5 Guidelines for Implementing Control Charts 330

8 DETERMINING PROCESS AND MEASUREMENT SYSTEMS CAPABILITY 344

Chapter Overview and Learning Objectives 345
8.1 Introduction 345
8.2 Process Capability Analysis Using a Histogram or a Probability Plot 347
8.2.1 Using the Histogram 347
8.2.2 Probability Plotting 349
8.3 Process Capability Ratios 351
8.3.1 Use and Interpretation of \(C_p \) 351
8.3.2 Process Capability Ratio for an Off-Center Process 354
8.3.3 Normality and the Process Capability Ratio 356
8.3.4 More about Process Centering 357
8.3.5 Confidence Intervals and Tests on Process Capability Ratios 359
8.4 Process Capability Analysis Using a Control Chart 364
8.5 Process Capability Analysis Using Designed Experiments 366
8.6 Process Capability Analysis with Attribute Data 367
8.7 Gauge and Measurement System Capability Studies 368
8.7.1 Basic Concepts of Gauge Capability 368
8.7.2 The Analysis of Variance Method 373
8.7.3 Confidence Intervals in Gauge R & R Studies 376
8.7.4 False Defectives and Passed Defectives 377
8.7.5 Attribute Gauge Capability 381
8.8 Setting Specification Limits on Discrete Components 383
8.8.1 Linear Combinations 384
8.8.2 Nonlinear Combinations 387
Contents

8.9 Estimating the Natural Tolerance Limits of a Process
8.9.1 Tolerance Limits Based on the Normal Distribution
8.9.2 Nonparametric Tolerance Limits

9.2.2 Design of an EWMA Control Chart
9.2.3 Robustness of the EWMA to Non-normality
9.2.4 Rational Subgroups
9.2.5 Extensions of the EWMA

9.3 The Moving Average Control Chart

PART 4
OTHER STATISTICAL PROCESS-MONITORING AND CONTROL TECHNIQUES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>TIME-WEIGHTED CONTROL CHARTS</td>
<td>399</td>
</tr>
<tr>
<td>10</td>
<td>ADVANCED CONTROL CHARTING TECHNIQUES</td>
<td>433</td>
</tr>
</tbody>
</table>

Chapter Overview and Learning Objectives 400
9.1 The Cumulative Sum Control Chart 400
9.1.1 Basic Principles: The Cusum Control Chart for Monitoring the Process Mean 400
9.1.2 The Tabular or Algorithmic Cusum for Monitoring the Process Mean 403
9.1.3 Recommendations for Cusum Design 408
9.1.4 The Standardized Cusum 410
9.1.5 Improving Cusum Responsiveness for Large Shifts 410
9.1.6 The Fast Initial Response or Headstart Feature 410
9.1.7 One-Sided Cusums 413
9.1.8 A Cusums for Monitoring Process Variability 413
9.1.9 Rational Subgroups 414
9.1.10 Cusums for Other Sample Statistics 414
9.1.11 The V-Mask Procedure 415
9.1.12 The Self-Starting Cusum 417
9.2 The Exponentially Weighted Moving Average Control Chart 419
9.2.1 The Exponentially Weighted Moving Average Control Chart for Monitoring the Process Mean 419
9.2.2 Design of an EWMA Control Chart 422
9.2.3 Robustness of the EWMA to Non-normality 424
9.2.4 Rational Subgroups 425
9.2.5 Extensions of the EWMA 425
9.3 The Moving Average Control Chart 428

10.1 Statistical Process Control for Short Production Runs 435
10.1.1 \(\bar{x} \) and \(R \) Charts for Short Production Runs 435
10.1.2 Attributes Control Charts for Short Production Runs 437
10.1.3 Other Methods 437
10.2 Modified and Acceptance Control Charts 439
10.2.1 Modified Control Limits for the \(\bar{x} \) Chart 439
10.2.2 Acceptance Control Charts 442
10.3 Control Charts for Multiple-Stream Processes 443
10.3.1 Multiple-Stream Processes 443
10.3.2 Group Control Charts 443
10.3.3 Other Approaches 445
10.4 SPC With Autocorrelated Process Data 446
10.4.1 Sources and Effects of Autocorrelation in Process Data 446
10.4.2 Model-Based Approaches 450
10.4.3 A Model-Free Approach 458
10.5 Adaptive Sampling Procedures 462
10.6 Economic Design of Control Charts 463
10.6.1 Designing a Control Chart 463
10.6.2 Process Characteristics 464
10.6.3 Cost Parameters 464
10.6.4 Early Work and Semieconomic Designs 466
10.6.5 An Economic Model of the \(\bar{x} \) Control Chart 467
10.6.6 Other Work 472
10.7 Cuscore Charts 473
10.8 The Changepoint Model for Process Monitoring 475
10.9 Profile Monitoring 476
10.10 Control Charts in Health Care Monitoring and Public Health Surveillance 481
10.11 Overview of Other Procedures 482
 10.11.1 Tool Wear 482
 10.11.2 Control Charts Based on Other Sample Statistics 482
 10.11.3 Fill Control Problems 484
 10.11.4 Precontrol 484
 10.11.5 Tolerance Interval Control Charts 485
 10.11.6 Monitoring Processes with Censored Data 486
 10.11.7 Nonparametric Control Charts 487

11 MULTIVARIATE SPC 494
Chapter Overview and Learning Objectives 494
 11.1 The Multivariate Quality-Control Problem 495
 11.2 Description of Multivariate Data 497
 11.2.1 The Multivariate Normal Distribution 497
 11.2.2 The Sample Mean Vector and Covariance Matrix 498
 11.3 The Hotelling T^2 Control Chart 499
 11.3.1 Subgrouped Data 499
 11.3.2 Individual Observations 506
 11.4 The Multivariate EWMA Control Chart 509
 11.5 Regression Adjustment 513
 11.6 Control Charts for Monitoring Variability 516
 11.7 Latent Structure Methods
 11.7.1 Principal Components 518
 11.7.2 Partial Least Squares 523

12 PROCESS ADJUSTMENT AND PROCESS MONITORING 527
Chapter Overview and Learning Objectives 527
 12.1 Process Monitoring and Process Regulation 528
 12.2 Process Control by Feedback Adjustment 529
 12.2.1 A Simple Adjustment Scheme: Integral Control 529
 12.2.2 The Adjustment Chart 534
 12.2.3 Variations of the Adjustment Chart 536
 12.2.4 Other Types of Feedback Controllers 539
 12.3 Combining SPC and EPC 540

PART 5 PROCESS DESIGN AND IMPROVEMENT WITH DESIGNED EXPERIMENTS 547

13 BASIC EXPERIMENTAL DESIGN FOR PROCESS IMPROVEMENT 549
Chapter Overview and Learning Objectives 550
 13.1 What is Experimental Design? 550
 13.2 Examples of Designed Experiments
 In Process and Product Improvement 552
 13.3 Guidelines for Designing Experiments 554
 13.4 Factorial Experiments 556
 13.4.1 An Example 558
 13.4.2 Statistical Analysis 558
 13.4.3 Residual Analysis 563
 13.5 The 2^k Factorial Design
 13.5.1 The 2^2 Design 564
 13.5.2 The 2^k Design for $k \geq 3$ Factors 569
 13.5.3 A Single Replicate of the 2^k Design 579
 13.5.4 Addition of Center Points to the 2^k Design 582
 13.5.5 Blocking and Confounding in the 2^k Design 585
 13.6 Fractional Replication of the 2^k Design 587
 13.6.1 The One-Half Fraction of the 2^k Design 587
 13.6.2 Smaller Fractions: The 2^{k-p} Fractional Factorial Design 592

14 PROCESS OPTIMIZATION 602
Chapter Overview and Learning Objectives 602
 14.1 Response Surface Methods and Designs 603
 14.1.1 The Method of Steepest Ascent 605
14.1.2 Analysis of a Second-Order Response Surface 607
14.2 Process Robustness Studies 611
14.2.1 Background 611
14.2.2 The Response Surface Approach to Process Robustness Studies 613
14.3 Evolutionary Operation 619

PART 6
ACCEPTANCE SAMPLING 629

15
BASIC ACCEPTANCE SAMPLING PROCEDURES 631

Chapter Overview and Learning Objectives 631
15.1 The Acceptance-Sampling Problem 632
15.1.1 Advantages and Disadvantages of Sampling 633
15.1.2 Types of Sampling Plans 634
15.1.3 Lot Forfication 635
15.1.4 Random Sampling 635
15.1.5 Guidelines for Using Acceptance Sampling 636
15.2 Single-Sampling Plans for Attributes 637
15.2.1 Definition of a Single-Sampling Plan 637
15.2.2 The OC Curve 637
15.2.3 Designing a Single-Sampling Plan with a Specified OC Curve 642
15.2.4 Rectifying Inspection 643
15.3 Double, Multiple, and Sequential Sampling 646
15.3.1 Double-Sampling Plans 647
15.3.2 Multiple-Sampling Plans 651
15.3.3 Sequential-Sampling Plans 652
15.4 Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) 655
15.4.1 Description of the Standard 655
15.4.2 Procedure 657
15.4.3 Discussion 661
15.5 The Dodge–Romig Sampling Plans 663
15.5.1 AOQL Plans 664
15.5.2 LTPD Plans 667
15.5.3 Estimation of Process Average 667

16
ADDITIONAL SAMPLING PROCEDURES 670

Chapter Overview and Learning Objectives 670
16.1 Acceptance Sampling by Variables 671
16.1.1 Advantages and Disadvantages of Variables Sampling 671
16.1.2 Types of Sampling Plans Available 672
16.1.3 Caution in the Use of Variables Sampling 673
16.2 Designing a Variables Sampling Plan with a Specified OC Curve 673
16.3 MIL STD 414 (ANSI/ASQC Z1.9) 676
16.3.1 General Description of the Standard 676
16.3.2 Use of the Tables 677
16.3.3 Discussion of MIL STD 414 and ANSI/ASQC Z1.9 679
16.4 Other Variables Sampling Procedures 680
16.4.1 Sampling by Variables to Give Assurance Regarding the Lot or Process Mean 680
16.4.2 Sequential Sampling by Variables 681
16.5 Chain Sampling 681
16.6 Continuous Sampling 683
16.6.1 CSP-1 683
16.6.2 Other Continuous-Sampling Plans 686
16.7 Skip-Lot Sampling Plans 686

APPENDIX 691

I. Summary of Common Probability Distributions Often Used in Statistical Quality Control 692
II. Cumulative Standard Normal Distribution 693
III. Percentage Points of the \(\chi^2 \) Distribution 695
IV. Percentage Points of the \(t \) Distribution 696
V. Percentage Points of the \(F \) Distribution 697
VI. Factors for Constructing Variables Control Charts 702
VII. Factors for Two-Sided Normal Tolerance Limits 703
VIII. Factors for One-Sided Normal Tolerance Limits 704

BIBLIOGRAPHY 705

ANSWERS TO SELECTED EXERCISES 721

INDEX 729