Principles of Econometrics
Third Edition

R. Carter Hill
Louisiana State University

William E. Griffiths
University of Melbourne

Guay C. Lim
University of Melbourne
Contents

Preface ix

Chapter 1 An Introduction to Econometrics 1

1.1 Why Study Econometrics? 1
1.2 What is Econometrics About? 2
 1.2.1 Some Examples 3
1.3 The Econometric Model 4
1.4 How Do We Obtain Data? 5
 1.4.1 Experimental Data 5
 1.4.2 Nonexperimental Data 5
1.5 Statistical Inference 6
1.6 A Research Format 7

Chapter 2 The Simple Linear Regression Model 8

Learning Objectives 8
Keywords 9
2.1 An Economic Model 9
2.2 An Econometric Model 12
 2.2.1 Introducing the Error Term 15
2.3 Estimating the Regression Parameters 18
 2.3.1 The Least Squares Principle 20
 2.3.2 Estimates for the Food Expenditure Function 22
 2.3.3 Interpreting the Estimates 22
 2.3.3a Elasticities 23
 2.3.3b Prediction 24
 2.3.3c Computer Output 24
 2.3.4 Other Economic Models 24
2.4 Assessing the Least Squares Estimators 26
 2.4.1 The Estimator b_2 27
 2.4.2 The Expected Values of b_1 and b_2 27
 2.4.3 Repeated Sampling 28
 2.4.4 The Variances and Covariance of b_1 and b_2 29
2.5 The Gauss-Markov Theorem 31
2.6 The Probability Distributions of the Least Squares Estimators 32
2.7 Estimating the Variance of the Error Term 33
 2.7.1 Estimating the Variances and Covariances of the Least Squares Estimators 34
Chapter 3 Interval Estimation and Hypothesis Testing 48

Learning Objectives 48
Keywords 48
3.1 Interval Estimation 49
 3.1.1 The \(t \)-distribution 49
 3.1.2 Obtaining Interval Estimates 51
 3.1.3 An Illustration 52
 3.1.4 The Repeated Sampling Context 53
3.2 Hypothesis Tests 54
 3.2.1 The Null Hypothesis 55
 3.2.2 The Alternative Hypothesis 55
 3.2.3 The Test Statistic 55
 3.2.4 The Rejection Region 55
 3.2.5 A Conclusion 56
3.3 Rejection Regions for Specific Alternatives 56
 3.3.1 One-Tail Tests with Alternative "Greater Than" (>) 56
 3.3.2 One-Tail Tests with Alternative "Less Than" (<) 57
 3.3.3 Two-Tail Tests with Alternative "Not Equal To" (\(\neq \)) 58
3.4 Examples of Hypothesis Tests 59
 3.4.1 Right-Tail Tests 59
 3.4.1a One-Tail Test of Significance 59
 3.4.1b One-Tail Test of an Economic Hypothesis 60
 3.4.2 Left-Tail Tests 61
 3.4.3 Two-Tail Tests 62
 3.4.3a Two-Tail Test of an Economic Hypothesis 62
 3.4.3b Two-Tail Test of Significance 63
3.5 The \(p \)-value 64
 3.5.1 \(p \)-value for a Right-Tail Test 65
 3.5.2 \(p \)-value for a Left-Tail Test 66
 3.5.3 \(p \)-value for a Two-Tail Test 66
 3.5.4 \(p \)-value for a Two-Tail Test of Significance 67
3.6 Exercises 68
 3.6.1 Problems 68
 3.6.2 Computer Exercises 69
Appendix 3A Derivation of the \(t \)-Distribution 72
Appendix 3B Distribution of the \(t \)-Statistic Under \(H_1 \) 73
Chapter 6 Further Inference in the Multiple Regression Model 134

Learning Objectives 134
Keywords 135
6.1 The F-Test 135
 6.1.1 The Relationship Between t- and F-Tests 138
6.2 Testing the Significance of a Model 138
6.3 An Extended Model 140
6.4 Testing Some Economic Hypotheses 142
 6.4.1 The Significance of Advertising 142
 6.4.2 The Optimal Level of Advertising 142
 6.4.2a A One-Tail Test with More than One Parameter 144
 6.4.3 Using Computer Software 145
6.5 The Use of Nonsample Information 146
6.6 Model Specification 148
 6.6.1 Omitted Variables 149
 6.6.2 Irrelevant Variables 150
 6.6.3 Choosing the Model 151
 6.6.3a The RESET Test 151
6.7 Poor Data, Collinearity, and Insignificance 153
 6.7.1 The Consequences of Collinearity 153
 6.7.2 An Example 154
 6.7.3 Identifying and Mitigating Collinearity 155
6.8 Prediction 156
6.9 Exercises 157
 6.9.1 Problems 157
 6.9.2 Computer Exercises 160
Appendix 6A Chi-Square and F-Tests: More Details 163
Appendix 6B Omitted-Variable Bias: A Proof 165

Chapter 7 Nonlinear Relationships 166

Learning Objectives 166
Keywords 166
7.1 Polynomials 167
 7.1.1 Cost and Product Curves 167
 7.1.2 A Wage Equation 169
7.2 Dummy Variables 170
 7.2.1 Intercept Dummy Variables 171
 7.2.1a Choosing the Reference Group 172
Chapter 10 Random Regressors and Moment Based Estimation 268

Learning Objectives 268

Keywords 269

10.1 Linear Regression with Random x's 270

10.1.1 The Small Sample Properties of the Least Squares Estimator 270

10.1.2 Asymptotic Properties of the Least Squares Estimator: x Not Random 271

10.1.3 Asymptotic Properties of the Least Squares Estimator: x Random 272

10.1.4 Why Least Squares Fails 273

10.2 Cases in Which x and e are Correlated 274

10.2.1 Measurement Error 274

10.2.2 Omitted Variables 275

10.2.3 Simultaneous Equations Bias 276

10.2.4 Lagged Dependent Variable Models with Serial Correlation 276

10.3 Estimators Based on the Method of Moments 276

10.3.1 Method of Moments Estimation of a Population Mean and Variance 277

10.3.2 Method of Moments Estimation in the Simple Linear Regression Model 278

10.3.3 Instrumental Variables Estimation in the Simple Linear Regression Model 278

10.3.3a The Importance of Using Strong Instruments 279

10.3.3b An Illustration Using Simulated Data 280

10.3.3c An Illustration Using a Wage Equation 281
10.3.4 Instrumental Variables Estimation with Surplus Instruments 282
10.3.4a An Illustration Using Simulated Data 284
10.3.4b An Illustration Using a Wage Equation 284
10.3.5 Instrumental Variables Estimation in a General Model 285
10.3.5a Hypothesis Testing with Instrumental Variables Estimates 286
10.3.5b Goodness-of-Fit with Instrumental Variables Estimates 286

10.4 Specification Tests 286
10.4.1 The Hausman Test for Endogeneity 287
10.4.2 Testing for Weak Instruments 288
10.4.3 Testing Instrument Validity 289
10.4.4 Numerical Examples Using Simulated Data 290
10.4.4a The Hausman Test 290
10.4.4b Test for Weak Instruments 290
10.4.4c Testing Surplus Moment Conditions 291
10.4.5 Specification Tests for the Wage Equation 291

10.5 Exercises 292
10.5.1 Problems 292
10.5.2 Computer Exercises 293

Appendix 10A Conditional and Iterated Expectations 297
10A.1 Conditional Expectations 297
10A.2 Iterated Expectations 298
10A.3 Regression Model Applications 298

Appendix 10B The Inconsistency of Least Squares 299
Appendix 10C The Consistency of the IV Estimator 300
Appendix 10D The Logic of the Hausman Test 301

Chapter 11 Simultaneous Equations Models 303

Learning Objectives 303
Keywords 303
11.1 A Supply and Demand Model 304
11.2 The Reduced Form Equations 306
11.3 The Failure of Least Squares 307
11.4 The Identification Problem 307
11.5 Two-Stage Least Squares Estimation 309
11.5.1 The General Two-Stage Least Squares Estimation Procedure 310
11.5.2 The Properties of the Two-Stage Least Squares Estimator 311
11.6 An Example of Two-Stage Least Squares Estimation 311
11.6.1 Identification 312
11.6.2 The Reduced Form Equations 312
11.6.3 The Structural Equations 313
11.7 Supply and Demand at the Fulton Fish Market 314
11.7.1 Identification 315
11.7.2 The Reduced Form Equations 315
11.7.3 Two-Stage Least Squares Estimation of Fish Demand 317
11.8 Exercises 318
11.8.1 Problems 318
Chapter 12 Nonstationary Time-Series Data and Cointegration 325

Learning Objectives 325
Keywords 325
12.1 Stationary and Nonstationary Variables 326
 12.1.1 The First-Order Autoregressive Model 328
 12.1.2 Random Walk Models 331
12.2 Spurious Regressions 333
12.3 Unit Root Tests for Stationarity 335
 12.3.1 Dickey-Fuller Test 1 (No Constant and No Trend) 335
 12.3.2 Dickey-Fuller Test 2 (With Constant But No Trend) 335
 12.3.3 Dickey-Fuller Test 3 (With Constant and With Trend) 336
 12.3.4 The Dickey-Fuller Testing Procedure 336
 12.3.5 The Dickey-Fuller Tests: An Example 337
 12.3.6 Order of Integration 338
12.4 Cointegration 339
 12.4.1 An Example of a Cointegration Test 340
12.5 Regression When There is No Cointegration 340
 12.5.1 First Difference Stationary 341
 12.5.2 Trend Stationary 342
12.6 Exercises 342
 12.6.1 Problems 342
 12.6.2 Computer Exercises 344

Chapter 13 VEC and VAR Models:
An Introduction to Macroeconometrics 346

Learning Objectives 346
Keywords 346
13.1 VEC and VAR Models 347
13.2 Estimating a Vector Error Correction Model 349
 13.2.1 Example 349
13.3 Estimating a VAR Model 351
13.4 Impulse Responses and Variance Decompositions 352
 13.4.1 Impulse Response Functions 352
 13.4.1a The Univariate Case 352
 13.4.1b The Bivariate Case 353
 13.4.2 Forecast Error Variance Decompositions 355
 13.4.2a Univariate Analysis 355
 13.4.2b Bivariate Analysis 356
 13.4.2c The General Case 357
13.5 Exercises 357
 13.5.1 Problems 357
 13.5.2 Computer Exercises 358
Appendix 13A The Identification Problem 361
Chapter 14 Time-Varying Volatility and ARCH Models: An Introduction to Financial Econometrics 363

Learning Objectives 363
Keywords 363
14.1 The ARCH Model 364
 14.1.1 Conditional and Unconditional Forecasts 365
14.2 Time-Varying Volatility 365
14.3 Testing, Estimating and Forecasting 369
 14.3.1 Testing for ARCH Effects 369
 14.3.2 Estimating ARCH Models 369
 14.3.3 Forecasting Volatility 370
14.4 Extensions 371
 14.4.1 The GARCH Model—Generalized ARCH 371
 14.4.2 Allowing for an Asymmetric Effect 372
 14.4.3 GARCH-in-Mean and Time-Varying Risk Premium 374
14.5 Exercises 375
 14.5.1 Problems 375
 14.5.2 Computer Exercises 376

Chapter 15 Panel Data Models 382

Learning Objectives 382
Keywords 382
15.1 Grunfeld’s Investment Data 384
15.2 Sets of Regression Equations 385
15.3 Seemingly Unrelated Regressions 387
 15.3.1 Separate or Joint Estimation? 389
 15.3.2 Testing Cross-Equation Hypotheses 390
15.4 The Fixed Effects Model 391
 15.4.1 A Dummy Variable Model 391
 15.4.2 The Fixed Effects Estimator 393
 15.4.3 Fixed Effects Estimation Using a Microeconomic Panel 396
15.5 The Random Effects Model 398
 15.5.1 Error Term Assumptions 399
 15.5.2 Testing for Random Effects 400
 15.5.3 Estimation of the Random Effects Model 401
 15.5.4 An Example Using the NLS Data 402
 15.5.5 Comparing Fixed and Random Effects Estimators 403
 15.5.5a Endogeneity in the Random Effects Model 403
 15.5.5b The Fixed Effects Estimator in a Random Effects Model 404
 15.5.5c A Hausman Test 404
15.6 Exercises 406
 15.6.1 Problems 406
 15.6.2 Computer Exercises 408
Appendix 15A Estimation of Error Components 415
Chapter 16 Qualitative and Limited Dependent Variable Models 417

Learning Objectives 417

Keywords 417

16.1 Models with Binary Dependent Variables 418
16.1.1 The Linear Probability Model 419
16.1.2 The Probit Model 421
16.1.3 Interpretation of the Probit Model 422
16.1.4 Maximum Likelihood Estimation of the Probit Model 423
16.1.5 An Example 424

16.2 The Logit Model for Binary Choice 425

16.3 Multinomial Logit 426
16.3.1 Multinomial Logit Choice Probabilities 427
16.3.2 Maximum Likelihood Estimation 427
16.3.3 Post-Estimation Analysis 428
16.3.4 An Example 429

16.4 Conditional Logit 431
16.4.1 Conditional Logit Choice Probabilities 431
16.4.2 Post-Estimation Analysis 432
16.4.3 An Example 433

16.5 Ordered Choice Models 433
16.5.1 Ordinal Probit Choice Probabilities 434
16.5.2 Estimation and Interpretation 435
16.5.3 An Example 437

16.6 Models for Count Data 437
16.6.1 Maximum Likelihood Estimation 438
16.6.2 Interpretation in the Poisson Regression Model 439
16.6.3 An Example 440

16.7 Limited Dependent Variables 441
16.7.1 Censored Data 441
16.7.2 A Monte Carlo Experiment 442
16.7.3 Maximum Likelihood Estimation 444
16.7.4 Tobit Model Interpretation 445
16.7.5 An Example 446
16.7.6 Sample Selection 447
16.7.6a The Econometric Model 448
16.7.6b Heckit Example: Wages of Married Women 449

16.8 Exercises 450

Chapter 17 Writing an Empirical Research Report, and Sources of Economic Data 457

17.1 Selecting a Topic for an Economics Project 457
17.1.1 Choosing a Topic 457
17.1.2 Writing an Abstract 458

17.2 A Format for Writing a Research Report 458

17.3 Sources of Economic Data 460
17.3.1 Links to Economic Data on the Internet 460
17.3.2 Traditional Sources of Economic Data 461
17.3.3 Interpreting Economic Data 461

17.4 Exercises 462
Appendix A Review of Math Essentials 463

Learning Objectives 463
Keywords 463
A.1 Summation 464
A.2 Some Basics 465
 A.2.1 Numbers 465
 A.2.2 Exponents 466
 A.2.3 Scientific Notation 466
 A.2.4 Logarithms and the Number e 466
A.3 Linear Relationships 468
 A.3.1 Elasticity 469
A.4 Nonlinear Relationships 470
 A.4.1 Quadratic Function 471
 A.4.2 Cubic Function 471
 A.4.3 Reciprocal Function 472
 A.4.4 Log-Log Function 473
 A.4.5 Log-Linear Function 473
 A.4.6 Approximating Logarithms 473
 A.4.7 Approximating Logarithms in the Log-Linear Model 474
 A.4.8 Linear-Log Function 475
A.5 Exercises 476

Appendix B Review of Probability Concepts 478

Learning Objectives 478
Keywords 479
B.1 Random Variables 479
B.2 Probability Distributions 480
B.3 Joint, Marginal and Conditional Probability Distributions 483
 B.3.1 Marginal Distributions 484
 B.3.2 Conditional Probability 484
 B.3.3 A Simple Experiment 486
B.4 Properties of Probability Distributions 487
 B.4.1 Mean, Median and Mode 487
 B.4.2 Expected Values of Functions of a Random Variable 488
 B.4.3 Expected Values of Several Random Variables 490
 B.4.4 The Simple Experiment Again 492
B.5 Some Important Probability Distributions 493
 B.5.1 The Normal Distribution 493
 B.5.2 The Chi-Square Distribution 495
 B.5.3 The t-Distribution 495
 B.5.4 The F-Distribution 496
B.6 Exercises 497

Appendix C Review of Statistical Inference 501

Learning Objectives 501
Keywords 502
C.1 A Sample of Data 502
C.2 An Econometric Model 504
C.3 Estimating the Mean of a Population 504
 C.3.1 The Expected Value of \bar{Y} 506
 C.3.2 The Variance of \bar{Y} 506
 C.3.3 The Sampling Distribution of \bar{Y} 507
 C.3.4 The Central Limit Theorem 508
 C.3.5 Best Linear Unbiased Estimation 509
C.4 Estimating the Population Variance and Other Moments 509
 C.4.1 Estimating the Population Variance 510
 C.4.2 Estimating Higher Moments 511
 C.4.3 The Hip Data 511
 C.4.4 Using the Estimates 512
C.5 Interval Estimation 512
 C.5.1 Interval Estimation: σ^2 Known 513
 C.5.2 A Simulation 514
 C.5.3 Interval Estimation: σ^2 Unknown 515
 C.5.4 A Simulation (Continued) 517
 C.5.5 Interval Estimation Using the Hip Data 517
C.6 Hypothesis Tests About a Population Mean 517
 C.6.1 Components of Hypothesis Tests 517
 C.6.1a The Null Hypothesis 518
 C.6.1b The Alternative Hypothesis 518
 C.6.1c The Test Statistic 518
 C.6.1d The Rejection Region 519
 C.6.1e A Conclusion 519
 C.6.2 One-Tail Tests with Alternative "Greater Than" (>) 519
 C.6.3 One-Tail Tests with Alternative "Less Than" (<) 519
 C.6.4 Two-Tail Tests with Alternative "Not Equal To" (\neq) 520
 C.6.5 Example of a One-Tail Test Using the Hip Data 520
 C.6.6 Example of a Two-Tail Test Using Hip Data 521
 C.6.7 The p-Value 522
 C.6.8 A Comment on Stating Null and Alternative Hypotheses 523
 C.6.9 Type I and Type II Errors 524
 C.6.10 A Relationship Between Hypothesis Testing and Confidence Intervals 525
C.7 Some Other Useful Tests 525
 C.7.1 Testing the Population Variance 525
 C.7.2 Testing the Equality of Two Population Means 526
 C.7.3 Testing the Ratio of Two Population Variances 527
 C.7.4 Testing the Normality of a Population 527
C.8 Introduction to Maximum Likelihood Estimation 528
 C.8.1 Inference with Maximum Likelihood Estimators 532
 C.8.2 The Variance of the Maximum Likelihood Estimator 533
 C.8.3 The Distribution of the Sample Proportion 534
 C.8.4 Asymptotic Test Procedures 536
 C.8.4a The Likelihood Ratio (LR) Test 536
 C.8.4b The Wald Test 538
 C.8.4c The Lagrange Multiplier (LM) Test 539
C.9 Algebraic Supplements (Optional) 541
 C.9.1 Derivation of Least Squares Estimator 541
 C.9.2 Best Linear Unbiased Estimation 543
C.10 Exercises 544

Appendix D Answers to Selected Exercises 548

Appendix E Tables 572
 Table 1 Cumulative Probabilities for the Standard Normal Distribution 572
 Table 2 Percentiles for the t-Distribution 573
 Table 3 Percentiles for the Chi-square Distribution 574
 Table 4 95th Percentile for the F-Distribution 575
 Table 5 99th Percentile for the F-Distribution 576

Index 577