Operations Management
Along the Supply Chain
International Student Version

Roberta S. Russell
Professor
Virginia Polytechnic Institute and State University

Bernard W. Taylor III
R. B. Pamplin Professor
Virginia Polytechnic Institute and State University
Contents

Six Sigma
- The Six Sigma Goal—3.4 DPMO
- Motorola’s Six Sigma Quality
- The Six Sigma Process
- Improvement Projects
 - Six Sigma Highlights
 - North Shore University Hospital: A Six Sigma Project Example
- Black Belts and Green Belts
- Design for Six Sigma
 - Six Sigma Highlights
 - North Shore University Hospital: A Six Sigma Project Example

The Breakthrough Strategy: DMAIC
- Six Sigma Highlights
- North Shore University Hospital: A Six Sigma Project Example

Improvement Projects
- Six Sigma Highlights
- North Shore University Hospital: A Six Sigma Project Example

E3 Motorola’s Six Sigma Quality
- The Six Sigma Process
- Improvement Projects
- Six Sigma Highlights
- North Shore University Hospital: A Six Sigma Project Example

The Six Sigma Process
- Improvement Projects
- Six Sigma Highlights
- North Shore University Hospital: A Six Sigma Project Example

The Cost of Quality
- The Cost of Achieving Good Quality
- The Cost of Poor Quality
 - The Cost of Poor Quality at Firestone
 - Measuring and Reporting Quality Costs
 - The Quality-Cost Relationship
 - The Quality-Cost Relationship

The Cost of Poor Quality
- The Cost of Poor Quality at Firestone
- Measuring and Reporting Quality Costs
- The Quality-Cost Relationship
- The Quality-Cost Relationship

IS The Cost of Poor Quality at Firestone
- Measuring and Reporting Quality Costs
- The Quality-Cost Relationship
- The Quality-Cost Relationship

Measuring and Reporting Quality Costs
- The Quality-Cost Relationship
- The Quality-Cost Relationship

The Quality-Cost Relationship
- The Quality-Cost Relationship
- The Quality-Cost Relationship

The Effect of Quality Management on Productivity
- Productivity
- Measuring Product Yield and Productivity
- The Quality-Productivity Ratio

Productivity
- Measuring Product Yield and Productivity
- The Quality-Productivity Ratio

Measuring Product Yield and Productivity
- The Quality-Productivity Ratio

The Quality-Productivity Ratio
- The Quality-Productivity Ratio

ISO 9000
- Standards
- Certification
- Implications of ISO 9000 for U.S. Companies
- ISO 9001 Certification at Monarcas Morelia
- ISO Registrars

ISO 9000
- Standards
- Certification
- Implications of ISO 9000 for U.S. Companies
- ISO 9001 Certification at Monarcas Morelia
- ISO Registrars

Summary
- Summary of Key Formulas
- Summary of Key Terms
- Solved Problems
- Questions
- Problems
- Case Problem 3.1—Quality Control at Rainwater Brewery
- Case Problem 3.2—Quality Control at Grass, Unlimited
- Case Problem 3.3—Improving Service Time at Dave’s Burgers

References

 SUPPLEMENT

Acceptance Sampling as Decision Support Analysis

Single-Sample Attribute Plan
- Producer’s and Consumer’s Risks
- The Operating Characteristic Curve
- Developing a Sampling Plan with OM Tools
- Average Outgoing Quality
- Double- and Multiple-Sampling Plans
- Summary
- Summary of Key Terms
- Solved Problem
- Questions
- Problems
- Case Problem 3.1—Quality Control at Rainwater Brewery
- Case Problem 3.2—Quality Control at Grass, Unlimited
- Case Problem 3.3—Improving Service Time at Dave’s Burgers

References

Process Capability and Statistical Process Control

The Basics of Statistical Process Control
- SPC in Quality Management
- Quality Measures: Attributes and Variables
- SPC Applied to Services
- Where to Use Control Charts
- Control Charts
- Control Charts for Attributes
- p-Chart
- c-Chart
- Control Charts for Variables
- Mean (x̄-) Chart
- Range (R-) Chart
- Using x̄- and R-Charts Together
- Using Control Charts at Kentucky Fried Chicken
- Control Chart Patterns
- Sample Size Determination
- SPC with Excel and OM Tools
- Process Capability
- Process Capability Measures
- Design Tolerances at Harley-Davidson Company
- Process Capability with Excel and OM Tools
- Summary
- Summary of Key Formulas
- Summary of Key Terms
- Solved Problems
- Questions
- Problems
- Case Problem 3.1—Quality Control at Rainwater Brewery
- Case Problem 3.2—Quality Control at Grass, Unlimited
- Case Problem 3.3—Improving Service Time at Dave’s Burgers

References

Designing Products

The Design Process
- Idea Generation
- Great Ideas from IDEO
- Feasibility Study
- Rapid Prototyping
- Form Design
- Functional Design

References
5. Designing Services

5.1 The Service Economy

The Service Economy
Characteristics of Services

5.2 The Service Design Process

The Service Design Process
The Service-Process Matrix

5.3 Tools for Service Design

Service Blueprinting
Front-Office and Back-Office Activities
Servicescapes

5.4 Quantitative Techniques

The Health Benefits of Good Design

5.5 Waiting Line Analysis for Service Improvement

Elements of Waiting Line Analysis
Elements of a Waiting Line
The Calling Population
The Arrival Rate
Service Times
Arrival Rate Less Than Service Rate
Queue Discipline and Length
Basic Waiting Line Structures

5.6 Operating Characteristics

Traditional Cost Relationships in Waiting Line Analysis

5.7 The Psychology of Waiting

Improving Waiting Time in England's National Health Service

5.8 Waiting Line Models

The Psychology of Waiting at Bank of America

6. Process Design and Technology Decisions

6.1 Process Planning

Outsourcing
Process Selection
Zara's Lightning Fast Processes
Process Selection with Break-even Analysis

6.2 Process Plans

Process Plans

6.3 Process Analysis

Process Flowcharts
Making Fast Food Faster

6.4 Process Innovation

Steps in Process Innovation
Progressive Innovates Processes

6.5 Technology Decisions

Financial Justification of Technology
Too Much of a Good Thing Turns Bad for JetBlue
A Technology Primer

7. Capacity and Facilities Planning

7.1 Capacity Planning

Facilities

7.2 Facilities

Objectives of Facility Layout
Bank of America's Towering Achievement in Green Design

7.3 Basic Layouts

Process Layouts
Product Layouts
Fixed-Position Layouts
Designing Process Layouts
- Block Diagramming
- Relationship Diagramming
- Computerized Layout Solutions

Designing Service Layouts
- Line Balancing
- Computerized Line Balancing

Designing Product Layouts
- Hybrid Layouts
 - Cellular Layouts
 - Advantages of Cellular Layouts
 - Cellular Prowess at Buck Knives, Parker-Hannifin, and Rowe Furniture
 - Disadvantages of Cellular Layouts
 - Flexible Manufacturing Systems
 - Mixed-Model Assembly Lines

Summary
- Summary of Key Formulas
- Summary of Key Terms
- Solved Problems
- Questions
- Problems
- Case Problem 7.1—Workout Plus
- Case Problem 7.2—Photo Op—Please Line Up
- Case Problem 7.3—The Grab 'n Go Cafe
- References

SUPPLEMENT
Facility Location Models
- Decision Support Tools

8. HR in Operations Management
Human Resources and Quality Management
- The Changing Nature of Human Resources Management
 - The Assembly Line
 - Limitations of Scientific Management
 - Employee Motivation
 - Human Resources Management at Baldrige National Quality Award-Winning Companies
- Contemporary Trends in Human Resources Management
 - Job Training
 - Cross Training
 - Employee Training at Kyphon, Inc., and Triage Consulting Group
 - Workforce Quality
 - Job Enrichment
 - Empowerment
 - Teams
 - Flexible Work Schedules
 - Alternative Workplaces and Telecommuting
 - Telecommuting at Merrill Lynch
 - Temporary and Part-Time Employees
 - Part-Time Employees at UPS
- Employee Compensation
- Types of Pay
- Gainsharing and Profit Sharing
- Managing Diversity in the Workplace
 - Affirmative Action and Equal Opportunity
- Diversity Management Programs
 - A Commitment to Diversity at UPS and Kodak
- Global Diversity Issues
 - Job Design
 - The Elements of Job Design
 - Task Analysis
 - Worker Analysis
 - Environmental Analysis
 - Ergonomics
 - Technology and Automation
- Job Analysis
 - Process Flowchart
 - Worker-Machine Chart
 - Motion Study
- Learning Curves
 - Determining Learning Curves with Excel
 - Learning Curves with OM Tools
- Summary
 - Summary of Key Formulas
 - Summary of Key Terms
 - Solved Problem
 - Questions
 - Problems
 - Case Problem 8.1—Maury Mills
- References
13. Role of Inventory Management 526

The Role of Inventory in Supply Chain Management 528
Inventory and Quality Management in the Supply Chain 529
The Elements of Inventory Management
Demand 530
Inventory Costs 530
Inventory Control Systems
Continuous Inventory Systems 531
Periodic Inventory Systems 532
The ABC Classification System
■ Inventory Management at Dell 533
■ Determining Supply Chain Strategy by Evaluating Inventory Costs at Hewlett-Packard 535
Economic Order Quantity Models 536
The Basic EOQ Model 536
The Production Quantity Model 539
Solution of EOQ Models with Excel 542
Solution of EOQ Models with OM Tools 542
Quantity Discounts 543
Quantity Discounts with Constant Carrying Cost 543
■ Electronic Auctions for Quantity-Discount Orders at Mars, Inc. 544
Quantity-Discount Model Solution with Excel 545
Reorder Point
Safety Stocks 546
Service Level 547
Reorder Point with Variable Demand
■ Establishing Inventory Safety Stocks at Kellogg’s 549
Determining the Reorder Point with Excel 549
Order Quantity for a Periodic Inventory System 549
Order Quantity with Variable Demand 550
Determining the Order Quantity for the Fixed-Period Model with Excel 550
Summary 552
Summary of Key Formulas 552
Summary of Key Terms 552
Solved Problems 553
Questions 554
Problems 555
Case Problem 13.1—The Instant Paper Clip Office Supply Company 559
Case Problem 13.2—The Texas Gladiators Apparel Store 560
Case Problem 13.3—Pharr Foods Company 560
References 561

13. SUPPLEMENT
Simulation Decision Analysis Tools and Technique 562
Monte Carlo Simulation 563
Computer Simulation with Excel 567

Decision Making with Simulation 568
Areas of Simulation Application 571
Waiting Lines/Service 571
Inventory Management 571
Production and Manufacturing Systems 571
Capital Investment and Budgeting 571
Logistics 571
Service Operations 572
Environmental and Resource Analysis 572

Summary 572
Summary of Key Terms 572
Solved Problem 573
Questions 574
Problems 574
References 578

The Sales and Operations Planning Process 580
■ Disney’s Magic Numbers 583
Strategies for Adjusting Capacity
Level Production 584
Chase Demand 584
■ Following the Harvest 585
Peak Demand 585
Overtime and Undertime 585
Subcontracting 585
Part-Time Workers 585
Backlogs, Backordering, and Lost Sales 586
Strategies for Managing Demand 586
Quantitative Techniques for Aggregate Planning
Pure Strategies 587
■ How Dell Excels 588
Mixed Strategies 590
General Linear Programming Model 590
The Transportation Method 590
Other Quantitative Techniques 595
The Hierarchical Nature of Planning 599
Collaborative Planning 599
Available-to-Promise 599
Aggregate Planning for Services 601
Yield Management 602
■ Overbooking 603
Fare Classes 603
Single-Order Quantities 603
Summary 604
Summary of Key Terms 605
Solved Problems 605
Questions 607
Problems 607
Case Problem 14.1—Have a Seat, Bloke 612
Case Problem 14.2—Erin’s Energy Plan 613
References 614
14. SUPPLEMENT
Linear Programming Decision Analysis Tools and Technique

Model Formulation 617
Graphical Solution Method 618
Linear Programming Model Solution 622
The Simplex Method 622
Slack and Surplus Variables 623
Solving Linear Programming Problems with Excel 624
Sensitivity Analysis 625
Sensitivity Ranges 626
Summary 628
Summary of Key Terms 628
Solved Problem 629
Questions 629
Problems 629
Case Problem S14.1—Mosaic Tile Company 640
Case Problem S14.2—Summer Sports Camp at State University 641
Case Problem S14.3—Spring Garden Tools 641
Case Problem S14.4—Walsh's Juice Company 642
Case Problem S14.5—Julia's Food Booth 643
Case Problem S14.6—The Sea Village Amusement Park 644
References 645

15. Resource Planning Systems

Material Requirements Planning (MRP) 646
When to Use MRP 647
Dependent Demand 648
Discrete Demand 649
Complex Products 649
Erratic Orders 650
Assemble-to-Order 650
Master Production Schedule 650
Product Structure File 651
Phantom Bills 653
K-Bills 653
Modular Bills 653
Time-Phased Bills 654
Item Master File 655
Five Million Possibilities at Hubbell Lighting 656
The MRP Process 656
Lot Sizing in MRP Systems 659
Economic Order Quantity 659
Periodic Order Quantity 660
MRP Outputs 662
Capacity Requirements Planning (CRP) 663
Calculating Capacity 663
Load Profiles 665
Overloads 666
Load Leveling 667
Relaxing MRP Assumptions 667
Enterprise Resource Planning (ERP) 668
ERP Modules 670
Finance/Accounting 670
Sales/Marketing 670
Enterprise Resource Planning at Cybex 671
Production/Materials Management 671
Human Resources 671
ERP Implementation 672
Best-of-Breed at Best Buy 673
Analyze Business Processes 673
Choose Modules to Implement 674
Align Level of Sophistication 674
Finalize Delivery and Access 674
Operational Excellence at Nike 675
Link with External Partners 675
Customer Relationship Management (CRM) 675
Supply Chain Management (SCM) 676
Product Lifecycle Management (PLM) 676
Connectivity and Integration 676
Summary 677
Summary of Key Terms 678
Questions 678
Solved Problem 679
Problems 680
Case Problem 15.1—Hosuki 684
References 685

16. Lean System Methods

The Basic Elements of Lean Production 689
Flexible Resources 690
Cellular Layouts 691
The Pull System 692
Lean Service at Jefferson Pilot 693
Kanbans 694
Small Lots 697
Quick Setups 698
Uniform Production Levels 700
Quality at the Source 702
Visual Control 702
Kaizen 702
Jidoka 703
Total Productive Maintenance 704
Supplier Networks 705
The Benefits of Lean Production 706
As You Like It 707
Implementing Lean Production 708
Lean Service at Blockbuster 712
Lean Banking 711
Lean Health Care 711
Lean Retailing at Blockbuster 712
Lean Retailing at Blockbuster 712
Lean the Supply Chain 713
Lean Six Sigma 713
Lean and the Environment 713
Xerox is Back, Thanks to Lean Six Sigma 714
Lean Consumption 714
17. Scheduling

Objectives in Scheduling

Loading
 The Assignment Method of Loading

Sequencing
 Sequencing Jobs through One Process
 Sequencing Jobs through Two Serial Processes
 Guidelines for Selecting a Sequencing Rule

Patient Scheduling

Monitoring
 Gantt Charts
 Input/Output Control

Summary
Summary of Key Formulas
Summary of Key Terms
Questions
Problems
Case Problem 16.1—The Blitz is On
Case Problem 16.2—Where’s My Cart?
References

Advanced Planning and Scheduling Systems
 When Good Genes Make Good Schedules
 Theory of Constraints
 Drum-Buffer-Rope
 Process vs. Transfer Batch Sizes
 Employee Scheduling
 Automated Scheduling Systems

Summary

Summary of Key Formulas
Summary of Key Terms
Solved Problems
Questions
Problems
Case Problem 17.1—From a Different Perspective
References

Appendix A—Normal Curve Areas
Solutions to Selected Problems
Index