Bioeconomics of Fisheries Management

Lee G. Anderson
College of Earth, Ocean, and the Environment
University of Delaware
Newark, Delaware
USA

Juan Carlos Seijo
School of Natural Resources
Marist University of Merida
Merida, Yucatan
Mexico
Contents

Preface ix
Acknowledgments xi

1 Introduction 3
 1.1 Why is fisheries management and regulation needed? 3
 1.2 The social trap and free rider behavior in fisheries 5
 1.3 Stock fluctuations due to natural causes 5
 1.4 Fisheries bioeconomics 6
References 10

2 Fundamentals of fisheries bioeconomics 11
 2.1 Introduction 11
 2.2 The Schaefer logistic growth model 12
 2.3 Schaeffer logistic growth with harvest 15
 2.4 A more formal analysis of commercial harvest 17
 2.5 The basic bioeconomic model 21
 2.6 Deriving revenue and cost functions 21
 2.7 Static maximum economic yield 24
 2.8 Open access utilization of a fishery 25
 2.9 Postscript on structural change under open access 28
References 29

3 Open access dynamics 31
 3.1 Introduction 31
 3.2 Bioeconomic equilibrium 31
 3.3 The process of obtaining an equilibrium 34
 3.4 Bioeconomic equilibrium in a disaggregated model 39

4 Optimal dynamic utilization 51
 4.1 Introduction 51
 4.2 The general model with nonlinear yield functions 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Formal analysis of optimal dynamic utilization</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Interpretation of the Golden Rule</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>71</td>
</tr>
<tr>
<td>5 Age-structured bioeconomic model</td>
<td>73</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>73</td>
</tr>
<tr>
<td>5.2 The age-class bioeconomic model</td>
<td>76</td>
</tr>
<tr>
<td>5.3 The details of the age-class bioeconomic model</td>
<td>81</td>
</tr>
<tr>
<td>5.4 Biological analysis with age class model</td>
<td>87</td>
</tr>
<tr>
<td>5.5 Population dynamics in age-class models</td>
<td>93</td>
</tr>
<tr>
<td>5.6 Bioeconomic analysis with age-class models</td>
<td>97</td>
</tr>
<tr>
<td>References</td>
<td>102</td>
</tr>
<tr>
<td>6 The fisheries management process</td>
<td>105</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>6.2 The paradigm of modern fisheries management</td>
<td>105</td>
</tr>
<tr>
<td>6.3 Historical perspective on the development of the paradigm</td>
<td>107</td>
</tr>
<tr>
<td>6.4 The specification of harvest control rules</td>
<td>109</td>
</tr>
<tr>
<td>6.5 Limit and target harvests</td>
<td>112</td>
</tr>
<tr>
<td>6.6 Monte Carlo results with scientific uncertainty</td>
<td>114</td>
</tr>
<tr>
<td>6.7 Monte Carlo results with scientific and implementation uncertainty</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>118</td>
</tr>
<tr>
<td>7 Economic analysis of fishery regulation</td>
<td>121</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>121</td>
</tr>
<tr>
<td>7.2 Introduction of regulation discussion</td>
<td>126</td>
</tr>
<tr>
<td>7.3 Open access regulations</td>
<td>128</td>
</tr>
<tr>
<td>7.4 Limited-access regulation</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>177</td>
</tr>
<tr>
<td>8 Bioeconomics of ecosystem interdependencies</td>
<td>181</td>
</tr>
<tr>
<td>8.1 Current challenges of the ecosystems approach to fisheries</td>
<td>183</td>
</tr>
<tr>
<td>References</td>
<td>187</td>
</tr>
<tr>
<td>9 Ecological and technological interdependencies</td>
<td>189</td>
</tr>
<tr>
<td>9.1 Implicit form equations</td>
<td>190</td>
</tr>
<tr>
<td>9.2 Growth functions of ecologically interdependent species</td>
<td>190</td>
</tr>
<tr>
<td>9.3 Case 1: competition – the Lotka–Volterra model</td>
<td>194</td>
</tr>
<tr>
<td>9.4 Case 2: bioeconomics of predator–prey interdependencies</td>
<td>203</td>
</tr>
<tr>
<td>9.5 Case 3: fleets with heterogeneous fishing power and unit costs of effort competing for a stock</td>
<td>211</td>
</tr>
<tr>
<td>9.6 Case 4: multispecies and multifleet fishery – a fleet harvesting incidentally target species of another fishery</td>
<td>217</td>
</tr>
<tr>
<td>9.7 Case 5: sequential technological interdependencies of small-scale and industrial fleets – an age-structured model</td>
<td>224</td>
</tr>
<tr>
<td>9.8 An age-structured sequential bioeconomic model</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
</tbody>
</table>
10 Spatial management of fisheries
 10.1 Spatially distributed population of a single stock 233
 10.2 Distance from port to alternative fishing sites 236
 10.3 Spatial fishing behavior 237
 10.4 Spatial management of fisheries 244
 10.5 A metapopulation with source–sink configuration 248
 10.6 A bioeconomic model for source–sink configurations 249
 10.7 Migration in spatial models of fisheries 251
 10.8 Final remarks 253
References 253

11 Seasonality and long-term fluctuating stock 257
 11.1 Introduction 257
 11.2 Modeling recruitment seasonality 258
 11.3 Optimum allocation of seasonal effort 260
 11.4 Long-term patterns in small pelagic fisheries 261
 11.5 Long-term pattern of fluctuating environmentally driven recruitment 265
References 269

12 Dealing with risk and uncertainty 271
 12.1 Climate change increases uncertainty in marine fisheries 272
 12.2 Indicators, reference points, and control law 274
 12.3 Case 1: selecting adequate vessel size for a stock fluctuating fishery 276
 12.4 Bayesian criterion 277
 12.5 Decision criteria without mathematical probabilities 277
 12.6 Case 2: stock recovery strategies of a multifleet fishery with alternative biomass LRPs 280
 12.7 Probability of exceeding a spawning stock LRP in the stock recovery process 283
References 284

Appendices 287
 1 Spatial dynamics of the fishery for three possible strategies of spatial behavior of fishers 287
 2 Modeling recruitment seasonality 291
 3 Summary of model equations and bioeconomic parameter sets 293

Index 297