MODELS
FOR
QUANTIFYING RISK

SECOND EDITION

ROBIN J. CUNNINGHAM, FSA, Ph.D.
THOMAS N. HERZOG, ASA, Ph.D.
RICHARD L. LONDON, FSA

B 353999

ACTEX PUBLICATIONS, INC.
WINSTED, CONNECTICUT
TABLE OF CONTENTS

PREFACE iii

CHAPTER 1 REVIEW OF INTEREST THEORY 3

1.1 Interest Measures 3
1.2 Level Annuity Functions 7
 1.2.1 Immediate Annuity 7
 1.2.2 Annuity-due 8
 1.2.3 Continuous Annuity 9
1.3 Non-Level Annuity Functions 11
 1.3.1 Immediate Annuities 11
 1.3.2 Annuities-due 13
 1.3.3 Continuous Annuities 15
1.4 Equation of Value 17

CHAPTER 2 REVIEW OF PROBABILITY 19

2.1 Random Variables and Their Distributions 19
 2.1.1 Discrete Random Variables 20
 2.1.2 Continuous Random Variables 23
 2.1.3 Mixed Random Variables 25
 2.1.4 More on Moments of Random Variables 25
2.2 Survey of Particular Discrete Distributions 27
 2.2.1 The Discrete Uniform Distribution 27
 2.2.2 The Binomial Distribution 28
 2.2.3 The Negative Binomial Distribution 28
 2.2.4 The Geometric Distribution 30
 2.2.5 The Poisson Distribution 30
2.3 Survey of Particular Continuous Distributions 31
 2.3.1 The Continuous Uniform Distribution 31
 2.3.2 The Normal Distribution 32
TABLE OF CONTENTS

2.3.3 The Exponential Distribution 34
2.3.4 The Gamma Distribution 35

2.4 Multivariate Probability 36
2.4.1 The Discrete Case 36
2.4.2 The Continuous Case 39

2.5 Sums of Independent Random Variables 41
2.5.1 The Moments of S 41
2.5.2 Distributions Closed Under Convolution 42
2.5.3 The Method of Convolutions 44
2.5.4 Approximating the Distribution of S 45

2.6 Compound Distributions 45
2.6.1 The Moments of S 46
2.6.2 The Compound Poisson Distribution 48

CHAPTER 3
SURVIVAL MODELS
(CONTINUOUS PARAMETRIC CONTEXT)
51

3.1 The Age-at-Failure Random Variable 51
3.1.1 The Cumulative Distribution Function of X 53
3.1.2 The Survival Distribution Function of X 53
3.1.3 The Probability Density Function of X 54
3.1.4 The Hazard Rate Function of X 55
3.1.5 The Moments of the Age-at-Failure Random Variable X 57
3.1.6 Actuarial Survival Models 58

3.2 Examples of Parametric Survival Models 60
3.2.1 The Uniform Distribution 60
3.2.2 The Exponential Distribution 61
3.2.3 The Gompertz Distribution 62
3.2.4 The Makeham Distribution 62
3.2.5 The Weibull Distribution 63
3.2.6 Summary of Parametric Survival Models 63

3.3 The Time-to-Failure Random Variable 64
3.3.1 The Survival Distribution Function of T_x 65
3.3.2 The Cumulative Distribution Function of T_x 66
3.3.3 The Probability Density Function of T_x 67
3.3.4 The Hazard Rate Function of T_x 68
3.3.5 Moments of the Future Lifetime Random Variable T_x 68
3.3.6 The Time-to-Failure Random Variable K_x 71
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>4.3.1</td>
</tr>
<tr>
<td>4.3.2</td>
</tr>
<tr>
<td>4.3.3</td>
</tr>
<tr>
<td>4.3.4</td>
</tr>
<tr>
<td>4.3.5</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>4.5.1</td>
</tr>
<tr>
<td>4.5.2</td>
</tr>
<tr>
<td>4.5.3</td>
</tr>
<tr>
<td>4.5.4</td>
</tr>
<tr>
<td>4.6</td>
</tr>
<tr>
<td>4.7</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.1.1</td>
</tr>
<tr>
<td>5.1.2</td>
</tr>
<tr>
<td>5.1.3</td>
</tr>
<tr>
<td>5.1.4</td>
</tr>
<tr>
<td>5.2</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>5.3.1</td>
</tr>
<tr>
<td>5.3.2</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

5.3.3 Modifications of the Present Value Random Variable 141
5.3.4 Applications to Life Insurance 141
5.3.5 Continuous Functions Evaluated from Parametric Survival Models 142

5.4 Contingent Payment Models with Varying Payments 145
5.5 Continuous and m^{thly} Functions Approximated from the Life Table 148
5.5.1 Continuous Contingent Payment Models 148
5.5.2 m^{thly} Contingent Payment Models 151

5.6 Miscellaneous Examples 153
5.7 Exercises 156

CHAPTER 6 CONTINGENT ANNUITY MODELS
(LIFE ANNUITIES) 161

6.1 Whole Life Annuity Models 162
6.1.1 The Immediate Case 163
6.1.2 The Due Case 169
6.1.3 The Continuous Case 171

6.2 Temporary Annuity Models 174
6.2.1 The Immediate Case 174
6.2.2 The Due Case 179
6.2.3 The Continuous Case 182

6.3 Deferred Whole Life Annuity Models 185
6.3.1 The Immediate Case 185
6.3.2 The Due Case 187
6.3.3 The Continuous Case 188

6.4 Contingent Annuities Payable m^{thly} 191
6.4.1 The Immediate Case 191
6.4.2 The Due Case 192
6.4.3 Random Variable Analysis 193
6.4.4 Numerical Evaluation in the m^{thly} and Continuous Cases 195

6.5 Non-Level Payment Annuity Functions 197
6.6 Miscellaneous Examples 198
6.7 Exercises 203
Chapter 7: Funding Plans for Contingent Contracts (Annual Premiums) 211

7.1 Annual Funding Schemes for Contingent Payment Models 212
7.1.1 Discrete Contingent Payment Models 212
7.1.2 Continuous Contingent Payment Models 217
7.1.3 Contingent Annuity Models 218
7.1.4 Non-Level Premium Contracts 218

7.2 Random Variable Analysis 219
7.3 Continuous Payment Funding Schemes 224
7.3.1 Discrete Contingent Payment Models 224
7.3.2 Continuous Contingent Payment Models 225

7.4 Funding Schemes with m^{th} Payments 228
7.5 Funding Plans Incorporating Expenses 230
7.6 Miscellaneous Examples 233
7.7 Exercises 240

Chapter 8: Contingent Contract Reserves (Benefit Reserves) 245

8.1 Reserves for Contingent Payment Models with Annual Payment Funding 247
8.1.1 Reserves by the Prospective Method 247
8.1.2 Reserves by the Retrospective Method 250
8.1.3 Additional Terminal Reserve Expressions 253
8.1.4 Random Variable Analysis 255
8.1.5 Reserve for Contingent Contracts with Immediate Payment of Claims 257
8.1.6 Reserves for Contingent Annuity Models 258

8.2 Recursive Relationships for Discrete Models with Annual Premiums 259
8.2.1 Group Deterministic Approach 259
8.2.2 Random Variable Analysis - Cash Basis 263
8.2.3 Random Variable Analysis - Accrued Basis 266

8.3 Reserves for Contingent Payment Models with Continuous Payment Funding 270
8.3.1 Discrete Whole Life Contingent Payment Models 270
8.3.2 Continuous Whole Life Contingent Payment Models 271
8.3.3 Random Variable Analysis 273

8.4 Reserves for Contingent Payment Models with m^{thly} Payment Funding 274
8.5 Incorporation of Expenses 277
8.6 Reserves at Fractional Durations 278
8.7 Generalization to Non-Level Benefits and Premiums 281
8.7.1 Discrete Models 281
8.7.2 Continuous Models 284
8.8 Miscellaneous Examples 286
8.9 Exercises 290

CHAPTER 9 MODELS DEPENDENT ON MULTIPLE SURVIVALS (MULTI-LIFE MODELS) 297

9.1 The Joint-Life Model 297
9.1.1 The Time-to-Failure Random Variable for a Joint-Life Status 298
9.1.2 Survival Distribution Function of T_{xy} 298
9.1.3 Cumulative Distribution Function of T_{xy} 299
9.1.4 Probability Density Function of T_{xy} 300
9.1.5 Hazard Rate Function of T_{xy} 301
9.1.6 Conditional Probabilities 301
9.1.7 Moments of T_{xy} 303

9.2 The Last-Survivor Model 304
9.2.1 The Time-to-Failure Random Variable for a Last-Survivor Status 304
9.2.2 Functions of the Random Variable T_{xy} 305
9.2.3 Relationships Between T_{xy} and T_{xy}^* 308

9.3 Contingent Probability Functions 309

9.4 Contingent Contracts Involving Multi-Life Statuses 312
9.4.1 Contingent Payment Models 312
9.4.2 Contingent Annuity Models 314
9.4.3 Annual Premiums and Reserves 315
9.4.4 Reversionary Annuities 317
9.4.5 Contingent Insurance Functions 319

9.5 General Random Variable Analysis 320
9.5.1 Marginal Distributions of T_x and T_y 320
9.5.2 The Covariance of T_x and T_y 321
9.5.3 Other Joint Functions of T_x and T_y 323
9.5.4 Joint and Last-Survivor Status Functions 326

9.6 Common Shock – A Model for Lifetime Dependency 328

9.7 Exercises 331
<table>
<thead>
<tr>
<th>CHAPTER 10</th>
<th>MULTIPLE CONTINGENCIES WITH APPLICATIONS (MULTIPLE-DECREMENT MODELS)</th>
<th>337</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Discrete Multiple-Decrement Models</td>
<td>337</td>
</tr>
<tr>
<td>10.1.1</td>
<td>The Multiple-Decrement Table</td>
<td>339</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Random Variable Analysis</td>
<td>342</td>
</tr>
<tr>
<td>10.2</td>
<td>Theory of Competing Risks</td>
<td>344</td>
</tr>
<tr>
<td>10.3</td>
<td>Continuous Multiple-Decrement Models</td>
<td>345</td>
</tr>
<tr>
<td>10.4</td>
<td>Uniform Distribution of Decrement</td>
<td>349</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Uniform Distribution in the Multiple-Decrement Context</td>
<td>350</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Uniform Distribution in the Associated Single-Decrement Tables</td>
<td>352</td>
</tr>
<tr>
<td>10.5</td>
<td>Actuarial Present Value</td>
<td>355</td>
</tr>
<tr>
<td>10.6</td>
<td>Asset Shares</td>
<td>361</td>
</tr>
<tr>
<td>10.7</td>
<td>Multi-State Models</td>
<td>364</td>
</tr>
<tr>
<td>10.7.1</td>
<td>The Homogeneous Process</td>
<td>364</td>
</tr>
<tr>
<td>10.7.2</td>
<td>The Nonhomogeneous Process</td>
<td>371</td>
</tr>
<tr>
<td>10.8</td>
<td>Exercises</td>
<td>372</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 11</th>
<th>CLAIM FREQUENCY MODELS</th>
<th>381</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Section 2.2 (Discrete Distributions) Revisited</td>
<td>381</td>
</tr>
<tr>
<td>11.1.1</td>
<td>The Binomial Distribution</td>
<td>381</td>
</tr>
<tr>
<td>11.1.2</td>
<td>The Poisson Distribution</td>
<td>382</td>
</tr>
<tr>
<td>11.1.3</td>
<td>The Negative Binomial Distribution</td>
<td>387</td>
</tr>
<tr>
<td>11.1.4</td>
<td>The Geometric Distribution</td>
<td>391</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Summary of the Recursive Relationships</td>
<td>391</td>
</tr>
<tr>
<td>11.2</td>
<td>Creation of Additional Counting Distributions</td>
<td>392</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Compound Frequency Models</td>
<td>393</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Mixture Frequency Models</td>
<td>398</td>
</tr>
<tr>
<td>11.3</td>
<td>Counting Processes</td>
<td>401</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Properties of Counting Processes</td>
<td>401</td>
</tr>
<tr>
<td>11.3.2</td>
<td>The Poisson Counting Process</td>
<td>403</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Further Properties of the Poisson Counting Process</td>
<td>403</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Poisson Mixture Processes</td>
<td>406</td>
</tr>
<tr>
<td>11.3.5</td>
<td>The Nonstationary Poisson Counting Process</td>
<td>407</td>
</tr>
<tr>
<td>11.4</td>
<td>Exercises</td>
<td>409</td>
</tr>
</tbody>
</table>
CHAPTER 12 CLAIM SEVERITY MODELS 413

12.1 Fundamental Continuous Distributions 414
12.1.1 The Normal and Exponential Distributions 414
12.1.2 The Pareto Distribution 414

12.2 Generating New Distributions 418
12.2.1 Summation 418
12.2.2 Scalar Multiplication 418
12.2.3 Power Operations 420
12.2.4 Exponentiation 423
12.2.5 Mixtures of Distributions 425
12.2.6 Spliced Distributions 428

12.3 Modifications of the Loss Random Variable 431
12.3.1 Deductibles 431
12.3.2 Policy Limits 433
12.3.3 Relationships between Deductibles and Policy Limits 435
12.3.4 Coinsurance Factors 437
12.3.5 The Effect of Inflation 438

12.4 Empirical Loss Distributions 441
12.5 Exercises 444

CHAPTER 13 MODELS FOR AGGREGATE PAYMENTS 449

13.1 Individual Risk versus Collective Risk 449
13.2 Selection of Frequency and Severity Distributions 453
13.2.1 Frequency 453
13.2.2 Severity 454
13.2.3 Frequency-Severity Interaction 455

13.3 More on the Collective Risk Model 456
13.3.1 Convolutions 456
13.3.2 Stop-Loss Reinsurance 461
13.3.3 The Compound Poisson Model 463

13.4 Infinitely Divisible Distributions 468
13.4.1 Definition of Infinite Divisibility 468
13.4.2 The Poisson Distribution 468
13.4.3 The Negative Binomial Distribution 469

13.5 Exercises 469
TABLE OF CONTENTS

CHAPTER 14 PROCESS MODELS 475

14.1 The Compound Poisson Process 475
 14.1.1 Moments of the Compound Poisson Process 476
 14.1.2 Other Properties of the Compound Poisson Process 477
14.2 The Surplus Process Model 478
14.3 The Probability of Ruin 481
 14.3.1 The Adjustment Coefficient 482
 14.3.2 The Probability of Ruin 485
14.4 The Distribution of Surplus Deficit 488
 14.4.1 The Event of $U(t) < u$ 488
 14.4.2 The Cumulative Loss of Surplus 491
14.5 Probability of Ruin in Finite Time 495
14.6 Exercises 496

APPENDIX A REVIEW OF MARKOV CHAINS 501

APPENDIX B REVIEW OF STOCHASTIC SIMULATION 523

APPENDIX C EVALUATION BY SIMULATION 541

APPENDIX D USING MICROSOFT EXCEL AND VISUAL BASIC MACROS TO COMPUTE ACTUARIAL FUNCTIONS 561

ANSWERS TO TEXT EXERCISES 577

BIBLIOGRAPHY 597

INDEX 599