CONTENTS

PREFACE xix

PART I PHILOSOPHY AND FUNDAMENTALS 1

1 Introduction to Quality Control and the Total Quality System 3
 1-1 Introduction and Chapter Objectives, 3
 1-2 Evolution of Quality Control, 4
 1-3 Quality, 7
 Quality Characteristics, 8
 Variables and Attributes, 8
 Defects, 9
 Standard or Specification, 9
 Quality of Design, 9
 Quality of Conformance, 10
 Quality of Performance, 11
 1-4 Quality Control, 11
 Off-Line Quality Control, 12
 Statistical Process Control, 12
 Acceptance Sampling Plans, 12
 1-5 Quality Assurance, 13
 1-6 Quality Circles and Quality Improvement Teams, 14
 1-7 Customer Needs and Market Share, 15
 Kano Model, 15
 1-8 Benefits of Quality Control and the Total Quality System, 16
 Total Quality System, 17
 1-9 Quality and Reliability, 17
 1-10 Quality Improvement, 18
 1-11 Product and Service Costing, 19
 Activity-Based Costing, 19
 1-12 Quality Costs, 22
 Prevention Costs, 23
 Appraisal Costs, 23
1-13 Measuring Quality Costs, 26
1-14 Management of Quality, 30
1-15 Quality and Productivity, 33
1-16 Total Quality Environmental Management, 36
1-17 Profile of a Company: The Bama Companies, Inc., 37
 Company History and Vision, 37
 Eyes on Quality, 38
 The Future Looks Bright, 38
 Innovation and Quality Improvement, 38
 People Make the Company, 39
Summary, 39
Key Terms, 40
Exercises, 40
References, 44

2 Some Philosophies and Their Impact on Quality
 2-1 Introduction and Chapter Objectives, 47
 2-2 Service Industries and Their Characteristics, 48
 Differences in the Manufacturing and Service Sectors, 48
 Service Quality Characteristics, 50
 Measuring Service Quality, 52
 Techniques for Evaluating Service Quality, 52
 2-3 Model for Service Quality, 53
 2-4 W. Edwards Deming's Philosophy, 56
 Extended Process, 57
 Deming's 14 Points for Management, 58
 Deming's Deadly Diseases, 72
 2-5 Philip B. Crosby's Philosophy, 75
 Four Absolutes of Quality Management, 76
 14-Step Plan for Quality Improvement, 76
 2-6 Joseph M. Juran's Philosophy, 78
 Quality Trilogy Process, 79
 Quality Planning, 79
 Quality Control, 80
 Quality Improvement, 81
 2-7 The Three Philosophies Compared, 82
 Definition of Quality, 82
 Management Commitment, 82
Strategic Approach to a Quality System, 83
Measurement of Quality, 83
Never-Ending Process of Improvement, 83
Education and Training, 83
Eliminating the Causes of Problems, 84
Goal Setting, 84
Structural Plan, 84
Summary, 85
Case Study: Clarke American Checks, Inc., 85
Key Terms, 88
Exercises, 89
References, 90

3 Quality Management: Practices, Tools, and Standards

3-1 Introduction and Chapter Objectives, 93
3-2 Management Practices, 94
 Total Quality Management, 94
 Vision and Quality Policy, 96
 Balanced Scorecard, 98
 Performance Standards, 100
3-3 Quality Function Deployment, 103
 QFD Process, 104
3-4 Benchmarking and Performance Evaluation, 110
 Benchmarking, 111
 Quality Auditing, 114
 Vendor Selection and Certification Programs, 116
 Vendor Rating and Selection, 117
3-5 Tools for Continuous Quality Improvement, 120
 Pareto Diagrams, 120
 Flowcharts, 121
 Cause-and-Effect Diagrams, 122
 Scatterplots, 123
 Multivariable Charts, 123
 Matrix and Three-Dimensional Plots, 125
 Failure Mode and Effects Criticality Analysis, 127
3-6 International Standards ISO 9000 and
 Other Derivatives, 133
 Features of ISO 9000 and ANSI/ISO/ASQ Q9000, 134
 Other Industry Standards, 134
3-7 Malcolm Baldrige National Quality Award, 135
 Award Eligibility Criteria and Categories, 135
 Criteria for Evaluation, 136
Summary, 138
Case Study: Robert Wood Johnson University Hospital Hamilton, 139
Key Terms, 142
Exercises, 142
References, 146
CONTENTS

Histograms, 229
Stem-and-Leaf Plots, 231
Box Plots, 232
Variations of the Basic Box Plot, 234
5-3 Randomness of a Sequence, 234
Run Chart, 235
5-4 Validating Distributional Assumptions, 236
Probability Plotting, 237
5-5 Transformations to Achieve Normality, 239
Some Common Transformations, 240
Power Transformations, 240
Johnson Transformation, 240
5-6 Analysis of Count Data, 244
Hypothesis Test on Cell Probabilities, 244
Contingency Tables, 245
Measures of Association, 246
5-7 Concepts in Sampling, 247
Sampling Designs and Schemes, 248
Sample Size Determination, 250
Bound on the Error of Estimation and Associated
Confidence Level, 250
Estimating the Difference of Two Population Means, 252
Estimating the Difference of Two Population
Proportions, 252
Controlling the Type I Error, Type II Error, and
Associated Parameter Shift, 253
Summary, 254
Key Terms, 255
Exercises, 256
References, 260

PART III STATISTICAL PROCESS CONTROL 263

6 Statistical Process Control Using Control Charts 265

6-1 Introduction and Chapter Objectives, 265
6-2 Causes of Variation, 267
 Special Causes, 267
 Common Causes, 267
6-3 Statistical Basis for Control Charts, 267
 Basic Principles, 267
 Selection of Control Limits, 269
 Errors in Making Inferences from Control Charts, 271
 Effect of Control Limits on Errors in Inference Making, 275
 Warning Limits, 276
 Effect of Sample Size on Control Limits, 276
 Average Run Length, 277
6-4 Selection of Rational Samples, 279
 Sample Size, 279
 Frequency of Sampling, 279
6-5 Analysis of Patterns in Control Charts, 280
 Some Rules for Identifying an Out-of-Control Process, 280
 Interpretation of Plots, 282
 Determination of Causes of Out-of-Control Points, 284
6-6 Maintenance of Control Charts, 284
 Summary, 285
 Key Terms, 285
 Exercises, 285
 References, 288

7 Control Charts for Variables 289

7-1 Introduction and Chapter Objectives, 289
7-2 Selection of Characteristics for Investigation, 290
7-3 Preliminary Decisions, 292
 Selection of Rational Samples, 292
 Sample Size, 292
 Frequency of Sampling, 292
 Choice of Measuring Instruments, 292
 Design of Data Recording Forms, 293
7-4 Control Charts for the Mean and Range, 293
 Development of the Charts, 293
 Variable Sample Size, 298
 Standardized Control Charts, 298
 Control Limits for a Given Target or Standard, 299
 Interpretation and Inferences from the Charts, 302
 Control Chart Patterns and Corrective Actions, 304
7-5 Control Charts for the Mean and Standard Deviation, 310
 No Given Standards, 311
 Given Standard, 312
7-6 Control Charts for Individual Units, 315
 No Given Standards, 316
 Given Standard, 316
7-7 Control Charts for Short Production Runs, 318
 \(\bar{X} \) and \(R \)-Charts for Short Production Runs, 319
 Z-MR Chart, 319
7-8 Other Control Charts, 321
 Cumulative Sum Control Chart for the Process Mean, 321
 Tabular Method, 322
 V-Mask Method, 324
 Cumulative Sum for Monitoring Process Variability, 329
 Moving-Average Control Chart, 329
 Exponentially Weighted Moving-Average or Geometric
 Moving-Average Control Chart, 332
CONTENTS xiii

Trend Chart (Regression Control Chart), 335
Modified Control Chart, 338
Acceptance Control Chart, 341
7-9 Multivariate Control Charts, 343
 Controlling Several Related Quality Characteristics, 343
 Hotelling's \(T^2 \) Control Chart and Its Variations, 345
 Usage and Interpretations, 348
 Individual Observations with Unknown
 Process Parameters, 348
 Generalized Variance Chart, 349
Summary, 354
Key Terms, 355
Exercises, 356
References, 367

8 Control Charts for Attributes 369
 8-1 Introduction and Chapter Objectives, 369
 8-2 Advantages and Disadvantages of Attribute Charts, 370
 Advantages, 370
 Disadvantages, 370
 8-3 Preliminary Decisions, 371
 8-4 Chart for Proportion Nonconforming: \(p \)-Chart, 372
 Construction and Interpretation, 373
 Variable Sample Size, 380
 Special Considerations for \(p \)-Charts, 384
 8-5 Chart for Number of Nonconforming Items: \(np \)-Chart, 384
 No Standard Given, 385
 Standard Given, 385
 8-6 Chart for the Number of Nonconformities: \(c \)-Chart, 387
 No Standard Given, 388
 Standard Given, 388
 Probability Limits, 390
 8-7 Chart for Number of Nonconformities Per
 Unit: \(u \)-Chart, 390
 Variable Sample Size and No Specified Standard, 391
 8-8 Chart for Demerits Per Unit: \(U \)-Chart, 393
 Classification of Nonconformities, 394
 Construction of a \(U \)-Chart, 394
 8-9 Charts for Highly Conforming Processes, 396
 Transformation to Normality, 397
 Use of Exponential Distribution for Continuous Variables, 397
 Use of Geometric Distribution for Discrete Variables, 398
 Probability Limits, 398
 8-10 Operating Characteristic Curves for Attribute Control Charts, 400
Summary, 403
Key Terms, 403
9 Process Capability Analysis

9-1 Introduction and Chapter Objectives, 415
9-2 Specification Limits and Control Limits, 416
9-3 Process Capability Analysis, 417
 Process Capability, 417
9-4 Natural Tolerance Limits, 419
 Statistical Tolerance Limits, 420
9-5 Specifications and Process Capability, 420
9-6 Process Capability Indices, 423
 \(C_p \) Index, 423
 Upper and Lower Capability Indices, 424
 \(C_{pk} \) Index, 425
 Capability Ratio, 427
 Taguchi Capability Index, \(C_{pmt} \), 428
 Confidence Intervals and Hypothesis Testing on Capability Indices, 429
 Comparison of Capability Indices, 430
 Effect of Measurement Error on Capability Indices, 434
 Gage Repeatability and Reproducibility, 435
 Evaluation of Measurement Systems, 436
 Metrics for Evaluation of Measurement Systems, 437
 Preparation for a Gage Repeatability and Reproducibility Study, 438
 \(C_p \) Index and the Nonconformance Rate, 441
9-7 Process Capability Analysis Procedures, 441
 Estimating Process Mean and Standard Deviation, 441
9-8 Capability Analysis for Nonnormal Distributions, 443
 Identification of Appropriate Distribution, 443
 Box-Cox Transformation, 444
 Using Attribute Charts, 444
 Using a Nonparametric Approach, 444
9-9 Setting Tolerances on Assemblies and Components, 445
 Tolerances on Assemblies and Subassemblies, 446
 Tolerance Limits on Individual Components, 448
 Tolerance on Mating Parts, 449
 Nonlinear Combinations of Random Variables, 452
9-10 Estimating Statistical Tolerance Limits of a Process, 453
 Statistical Tolerance Limits Based on Normal Distribution, 453
 Nonparametric Statistical Tolerance Limits, 454
Summary, 455
Key Terms, 456
Exercises, 456
References, 464
PART IV ACCEPTANCE SAMPLING

10 Acceptance Sampling Plans for Attributes and Variables

10-1 Introduction and Chapter Objectives, 467
10-2 Advantages and Disadvantages of Sampling, 468
10-3 Producer and Consumer Risks, 468
10-4 Operating Characteristic Curve, 469
 Effect of the Sample Size and the Acceptance Number, 472
10-5 Types of Sampling Plans, 473
 Advantages and Disadvantages, 474
10-6 Evaluating Sampling Plans, 475
 Average Outgoing Quality, 475
 Average Total Inspection, 477
 Average Sample Number, 478
10-7 Bayes' Rule and Decision Making Based on Samples, 480
10-8 Lot-by-Lot Attribute Sampling Plans, 483
 Single Sampling Plans, 483
 Double Sampling Plans, 490
 Multiple Sampling Plans, 496
 Standard Sampling Plans, 497
10-9 Other Attribute Sampling Plans, 501
 Chain Sampling Plan, 501
 Sequential Sampling Plan, 503
10-10 Deming's kp Rule, 504
 Critique of the kp Rule, 506
10-11 Sampling Plans for Variables, 507
 Advantages and Disadvantages of Variable Plans, 507
10-12 Variable Sampling Plans for a Process Parameter, 508
 and Known Process Standard Deviation, 508
 Estimating Process Average: Double Specification Limits
 and Known Process Standard Deviation, 510
 and Unknown Process Standard Deviation, 513
10-13 Variable Sampling Plans for Estimating the Lot Proportion
 Nonconforming, 514
 Standardized Plans: ANSI/ISO/ASQ Z1.9 and MIL-STD-414, 518

Summary, 519
Key Terms, 520
Exercises, 520
References, 526
PART V PRODUCT AND PROCESS DESIGN

11 Reliability

11-1 Introduction and Chapter Objectives, 529
11-2 Reliability, 529
11-3 Life-Cycle Curve and Probability Distributions in Modeling Reliability, 530
 Probability Distributions to Model Failure Rate, 530
 Availability, 534
11-4 System Reliability, 534
 Systems with Components in Series, 534
 Systems with Components in Parallel, 536
 Systems with Components in Series and in Parallel, 539
 Systems with Standby Components, 540
11-5 Operating Characteristic Curves, 542
11-6 Reliability and Life Testing Plans, 544
 Types of Tests, 544
 Life Testing Plans Using the Exponential Distribution, 545
 Summary, 554
 Key Terms, 554
 Exercises, 555
 References, 558

12 Experimental Design and the Taguchi Method

12-1 Introduction and Chapter Objectives, 559
12-2 Experimental Design Fundamentals, 560
 Features of Experimentation, 564
12-3 Some Experimental Designs, 565
 Completely Randomized Design, 566
 Randomized Block Design, 572
 Latin Square Design, 577
12-4 Factorial Experiments, 585
 Two-Factor Factorial Experiment Using a Completely
 Randomized Design, 586
 Two-Factor Factorial Experiment Using a
 Randomized Block Design, 590
 Role of Contrasts, 596
 The \(2^k\) Factorial Experiment, 602
 Confounding in \(2^k\) Factorial Experiments, 606
 Fractional Replication in \(2^k\) Experiments, 607
12-5 The Taguchi Method, 613
12-6 The Taguchi Philosophy, 614
12-7 Loss Functions, 617
 Target Is Best, 618
 Smaller Is Better, 621
 Larger Is Better, 622
Contents

12-8 Signal-to-Noise Ratio and Performance Measures, 624
 Target Is Best, 624
 Smaller Is Better, 627
 Larger Is Better, 627
12-9 Critique of S/N Ratios, 627
12-10 Experimental Design in the Taguchi Method, 628
 Orthogonal Arrays and Linear Graphs, 629
 Estimation of Effects, 639
12-11 Parameter Design in the Taguchi Method, 644
 Application to Attribute Data, 646
12-12 Critique of Experimental Design and the Taguchi Method, 648
 Summary, 650
 Key Terms, 651
 Exercises, 652
 References, 662

Appendixes 665

A-1 Cumulative Binomial Distribution, 665
A-2 Cumulative Poisson Distribution, 670
A-3 Cumulative Standard Normal Distribution, 672
A-4 Values of t for a Specified Right-Tail Area, 675
A-5 Chi-Squared Values for a Specified Right-Tail Area, 677
A-6 Values of F for a Specified Right-Tail Area, 679
A-7 Factors for Computing Center line and Three-Sigma Control Limits, 685
A-8 Uniform Random Numbers, 686

Index 687