Contents

Part I Discrete time – discrete space models.

Finite time horizon

1. **Introduction** .. 3
 1.1 Uncertainty and (partial) irreversibility 3
 1.2 Option value of waiting ... 4
 1.3 Bad news and good news principles 5
 1.4 Optimal stopping and stochastic control: capital expansion program .. 6
 1.5 Discounted utility anomalies 8
 1.6 Models of uncertainty .. 9
 1.7 Choice of the probability measure 11
 1.8 Techniques used in the monograph 11
 1.9 Overview of the monograph 14
 1.9.1 Extensions ... 16
 1.9.2 Notation .. 16

2. **Real options and American options** 17
 2.1 Basic examples .. 17
 2.1.1 Investment problem; two scenarios of the future 17
 2.1.2 Investment problem as an American call option 20
 2.1.3 Exit or option to abandon a stream 21
 2.1.4 Exit as an American put option 22
 2.2 Expected present value of a stream 22
 2.3 Further examples and extensions 24
 2.3.1 New job offer or option to swap streams of payoffs 24
 2.3.2 Embedded options. Partially reversible investment 25
 2.4 General analysis of the basic types of options 30
 2.4.1 Options to acquire or abandon a perpetual stream vs. options with instantaneous payoffs 30
2.4.2 Stopping times and equivalence of an option to acquire a stream g_t and the option to abandon the stream $-g_t$. 31

2.4.3 American options on a non-dividend paying stock. 32

Problems 33

3 Risk-neutral pricing. Finite time horizon case. 35

3.1 No-arbitrage and EMM. 35

3.2 Replication and complete markets. 38

3.3 European call and put options in a two-period model. 38

3.4 Complete and incomplete markets. 40

3.5 Multi-period model. 41
 3.5.1 Self-financing dynamic portfolios. 41
 3.5.2 No-arbitrage and EMM in a multi-period model. 42
 3.5.3 Replication and complete markets. 42
 3.5.4 Binomial model. 43
 3.5.5 Incomplete markets and the trinomial model. 45

3.6 American options. 45

Problems 47

Part II Discrete time – discrete space models. Infinite time horizon.

4 Random walks on \mathbb{Z}. 51
 4.1 Definition and main examples. 51
 4.2 Transition operator and EPV-operator \mathcal{E}. 52
 4.3 Bellman equation and calculation of $\mathcal{E}g$ using factorization. 53
 4.4 Calculation of $\mathcal{E}g$ for exponentially increasing g. 57

Problems 58

5 Options in the binomial and trinomial models. 59
 5.1 EPV of a stream, which is abandoned when X_t falls to a certain level. 59
 5.2 Timing exit. 62
 5.3 Interpretation in terms of EPV-operators under supremum and infimum processes. 65
 5.4 Exit under supply uncertainty. 66
 5.5 Entry in the binomial and trinomial models. 66
 5.5.1 Entry under demand uncertainty. 66
 5.5.2 Entry under supply uncertainty. 69
 5.6 Perpetual American options. 71
 5.6.1 Perpetual American call options. 71
 5.6.2 Perpetual American put options. 72
 5.6.3 General exercise rules for perpetual American options in the binomial and trinomial models. 74
5.7 Partially reversible investment .. 74
Problems ... 77

6 General random walks on \mathbb{Z}: Option pricing 79
6.1 Wiener–Hopf factorization .. 79
 6.1.1 Three forms of the Wiener–Hopf factorization 79
 6.1.2 Uniqueness of the Wiener–Hopf factorization 80
6.2 Properties of EPV operators \mathcal{E}^+ and \mathcal{E}^- 82
 6.2.1 Explicit formulas for \mathcal{E}^+ and \mathcal{E}^- 82
 6.2.2 Action in $l_\infty(\mathbb{Z})$.. 84
 6.2.3 The case of payoffs exponentially growing at infinity 86
6.3 EPVs of a stream and instantaneous payoff that are acquired or lost at a random time ... 89
 6.3.1 EPV of a stream that is abandoned when the threshold is reached or crossed from above .. 89
 6.3.2 EPV of a stream that is abandoned when the threshold is reached or crossed from below .. 91
 6.3.3 EPV of a stream that is acquired when the threshold is reached or crossed from above .. 91
 6.3.4 EPV of a stream that is acquired when threshold is reached or crossed from below .. 92
 6.3.5 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from above 92
 6.3.6 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from below 93
6.4 Main types of options. Optimality in the class of optimal stopping rules of the threshold type .. 93
 6.4.1 Optimal time to abandon an increasing stream 93
 6.4.2 Optimal time to abandon a decreasing stream 94
 6.4.3 Optimal time to acquire an increasing stream 94
 6.4.4 Optimal time to acquire a decreasing stream 95
 6.4.5 Perpetual call-like American options 96
 6.4.6 Perpetual put-like American options 96
6.5 Optimality in the class of all stopping times 97
 6.5.1 General verification lemmas ... 97
 6.5.2 Option to acquire an increasing stream 98
 6.5.3 Option to acquire a decreasing stream 100
 6.5.4 Option to abandon an increasing stream 100
 6.5.5 Option to abandon a decreasing stream 101
 6.5.6 Perpetual call-like American options 102
 6.5.7 Perpetual put-like American options on a dividend-paying stock .. 102
 6.5.8 Perpetual put-like American options on a non-dividend-paying stock .. 103
Problems ... 104
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Random walks on \mathbb{R}</td>
<td>107</td>
</tr>
<tr>
<td>7.1</td>
<td>Definitions and examples</td>
<td>107</td>
</tr>
<tr>
<td>7.2</td>
<td>Transition operator and EPV-operator \mathcal{E}</td>
<td>109</td>
</tr>
<tr>
<td>7.3</td>
<td>Bellman equation and calculation of $\mathcal{E}g$ using factorization</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>116</td>
</tr>
<tr>
<td>8</td>
<td>Basic options in the model (7.5)</td>
<td>117</td>
</tr>
<tr>
<td>8.1</td>
<td>EPV of a stream, which is abandoned when X_t falls to a certain level</td>
<td>117</td>
</tr>
<tr>
<td>8.2</td>
<td>Timing exit</td>
<td>120</td>
</tr>
<tr>
<td>8.3</td>
<td>Continuous pasting principle and smooth pasting principle</td>
<td>121</td>
</tr>
<tr>
<td>8.4</td>
<td>Continuous and discontinuous payoff functions</td>
<td>122</td>
</tr>
<tr>
<td>8.5</td>
<td>Interpretation in terms of the EPV-operators under the supremum and infimum processes</td>
<td>123</td>
</tr>
<tr>
<td>8.6</td>
<td>Exit under supply uncertainty</td>
<td>123</td>
</tr>
<tr>
<td>8.7</td>
<td>Entry</td>
<td>125</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Entry under demand uncertainty</td>
<td>125</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Entry under supply uncertainty</td>
<td>127</td>
</tr>
<tr>
<td>8.8</td>
<td>Perpetual American options</td>
<td>129</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Perpetual American call options</td>
<td>129</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Perpetual American put options</td>
<td>130</td>
</tr>
<tr>
<td>8.9</td>
<td>Expected waiting time</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>132</td>
</tr>
<tr>
<td>9</td>
<td>Optimal stopping for general random walks</td>
<td>133</td>
</tr>
<tr>
<td>9.1</td>
<td>Wiener-Hopf factorization</td>
<td>133</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Three forms of the Wiener-Hopf factorization</td>
<td>133</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Uniqueness of the Wiener–Hopf factorization</td>
<td>134</td>
</tr>
<tr>
<td>9.2</td>
<td>Properties of EPV operators \mathcal{E}^+ and \mathcal{E}^-</td>
<td>136</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Explicit formulas for \mathcal{E}^+ and \mathcal{E}^-</td>
<td>136</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Action in $\mathcal{L}_\infty(\mathbb{R})$</td>
<td>139</td>
</tr>
<tr>
<td>9.2.3</td>
<td>The case of payoffs exponentially growing at infinity</td>
<td>141</td>
</tr>
<tr>
<td>9.3</td>
<td>EPVs of a stream and instantaneous payoff that are acquired or lost at a random time</td>
<td>144</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Standing assumptions</td>
<td>144</td>
</tr>
<tr>
<td>9.3.2</td>
<td>EPV of a stream that is abandoned when the threshold is reached or crossed from above</td>
<td>145</td>
</tr>
<tr>
<td>9.3.3</td>
<td>EPV of a stream that is abandoned when the threshold is reached or crossed from below</td>
<td>146</td>
</tr>
<tr>
<td>9.3.4</td>
<td>EPV of a stream that is acquired when the threshold is reached or crossed from above</td>
<td>146</td>
</tr>
</tbody>
</table>
9.3.5 EPV of a stream that is acquired when the threshold is reached or crossed from below 147
9.3.6 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from above 147
9.3.7 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from below 148

9.4 Main types of options. Optimality in the class of optimal stopping rules of the threshold type 148
9.4.1 Standing assumptions and notation 148
9.4.2 Optimal time to abandon an increasing stream 148
9.4.3 Optimal time to abandon a decreasing stream 149
9.4.4 Optimal time to acquire an increasing stream 150
9.4.5 Optimal time to acquire a decreasing stream 150
9.4.6 Perpetual call-like American options 151
9.4.7 Perpetual put-like American options 151

9.5 Optimality in the class of all stopping times 152
9.5.1 General discussion and standing assumptions 152
9.5.2 Option to acquire an increasing stream 152
9.5.3 Option to acquire a decreasing stream 154
9.5.4 Option to abandon an increasing stream 154
9.5.5 Option to abandon a decreasing stream 155
9.5.6 Perpetual call-like American options 156
9.5.7 Perpetual put-like options on a dividend-paying stock 156
9.5.8 Perpetual put-like options on a non-dividend-paying stock 156

9.6 Investment lags 157
9.7 Incremental capital expansion 161
9.7.1 Investment threshold 161
9.7.2 Value of investment opportunity and firm's value 162
9.7.3 Capital stock dynamics 163

Problems 166

Part IV Continuous time - continuous space models

10 Brownian motion case 169
10.1 Main definitions 169
10.2 EPV-operators \mathcal{E}^{\pm} 172
10.2.1 Factorization of \mathcal{E} and EPV-operators \mathcal{E}^{\pm} 172
10.2.2 Main properties of operators \mathcal{E} and \mathcal{E}^{\pm} 173
10.2.3 The case of payoffs exponentially growing at infinity 175
10.3 EPV of a stream, which is abandoned when X_t falls to a certain level 177
10.4 Timing exit 179
10.5 Smooth pasting principle 181
10.6 Exit under supply uncertainty .. 181
10.7 Model entry problems .. 183
 10.7.1 Entry under demand uncertainty 183
 10.7.2 Investment lags ... 185
 10.7.3 Entry under supply uncertainty 185
10.8 Perpetual American options 187
 10.8.1 Perpetual American call options 187
 10.8.2 Perpetual American put options 188
10.9 Embedded options .. 189
 10.9.1 Debt-financed investment. Endogenous default 189
 10.9.2 Competitive interest rate for lending 191
 10.9.3 Debt-financed investment. Exogenous default 191
Problems .. 192

11 General Lévy processes .. 193
11.1 Main definitions .. 193
11.2 Wiener–Hopf factorization 195
 11.2.1 Three forms of the Wiener–Hopf factorization 195
 11.2.2 Uniqueness of the Wiener–Hopf factorization 197
 11.2.3 Analytic continuation of the factors $\kappa_q(z)$ 199
11.3 Properties of the EPV-operators \mathcal{E} and \mathcal{E}^\pm 200
 11.3.1 Explicit formulas for \mathcal{E}^+ and \mathcal{E}^- 200
 11.3.2 Main properties and action in spaces of functions of exponential growth 202
11.4 EPVs of a stream and instantaneous payoff that are acquired or lost at a random time .. 203
 11.4.1 Standing assumptions 203
 11.4.2 EPV of a stream that is abandoned when the threshold is reached or crossed from above 203
 11.4.3 EPV of a stream that is abandoned when the threshold is reached or crossed from below 205
 11.4.4 EPV of a stream that is acquired when the threshold is reached or crossed from above 205
 11.4.5 EPV of a stream that is acquired when the threshold is reached or crossed from below 206
 11.4.6 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from above 207
 11.4.7 EPV of an instantaneous payoff that is acquired when the threshold is reached or crossed from below 207
11.5 Main types of options. Optimality in the class of optimal stopping rules of the threshold type 207
 11.5.1 Optimal time to abandon an increasing stream 208
 11.5.2 Optimal time to abandon a decreasing stream 208
 11.5.3 Optimal time to acquire an increasing stream 209
 11.5.4 Optimal time to acquire a decreasing stream 210
11.5.5 Perpetual call-like American options 211
11.5.6 Perpetual put-like American options 212
11.6 Optimality in the class of all stopping times 212
11.6.1 General verification lemmas .. 213
11.6.2 Option to abandon an increasing stream 215
11.6.3 Option to abandon a decreasing stream 216
11.6.4 Option to acquire an increasing stream 217
11.6.5 Option to acquire a decreasing stream 218
11.6.6 Put-like options ... 218
11.6.7 Call-like options ... 220
11.6.8 Options to swap a stream for another one 221
11.7 Influence of idiosyncratic uncertainty on exit and entry 222
thresholds ... 222
Problems ... 223

12 Embedded options .. 225
12.1 Entry with an embedded option to exit 225
12.2 Embedded options: Russian dolls 227
12.2.1 Expanding dolls ... 227
12.2.2 Contracting dolls .. 230
12.3 Capital expansion program .. 232
12.3.1 Timing an investment of a marginal unit of capital 232
12.3.2 Option value .. 235
12.3.3 Non-standard shape of the boundary between the 236
action and inaction regions .. 236
12.4 New technology adoption ... 241
12.4.1 Model specification .. 241
12.4.2 One source of uncertainty 243
12.4.3 Two sources of uncertainty 246
12.4.4 Dependence of the new technology adoption threshold,
A^*, on diffusion and jump uncertainty 247
Problems ... 249

Part V Extensions

13 American options with finite time horizon 253
13.1 Call option .. 254
13.2 Put option .. 256
13.3 Gap between the early exercise boundary and strike 257
13.3.1 European options at expiry 258
13.3.2 Gap for the American call option 259
13.3.3 Gap for the American put option 260
14 Perpetual American and real options under Ornstein–Uhlenbeck processes ... 263
 14.1 The model ... 263
 14.2 Perpetual call option 264
 14.3 Perpetual put option 266
 14.4 Investment timing 268
 14.5 Timing exit .. 269
 14.6 Bad and good news principles as approximations 270
 14.6.1 The case of a general Markov process 270
 14.6.2 The case of the Ornstein–Uhlenbeck process 272
 14.7 Options with instantaneous payoffs 274
 14.7.1 Call option 274
 14.7.2 Put option 276

References ... 279

Index .. 283