Cointegration for the Applied Economist
Second Edition

Edited by
B. Bhaskara Rao
Contents

List of Tables x
List of Figures and Screens xiii
Preface to the First Edition xiv
Preface to the Second Edition xvi
Notes on Contributors xviii

1 Introduction 1
 B. Bhaskara Rao 1
 1.1 Introduction 1
 1.2 Unit roots and cointegration 1
 1.3 Economic implications 3
 1.4 An overview of the papers 5
 1.5 Concluding observations 8

2 A Primer on Cointegration with an Application to Money and Income 10
 David A. Dickey, Dennis W. Jansen and Daniel L. Thornton 10
 2.1 Introduction 10
 2.2 Testing for cointegration: a general framework 11
 2.2.1 Locating stationary linear combination of variables 12
 2.2.2 Multiple cointegrating vectors 13
 2.2.3 Tests for cointegration and their relation to unit root tests 15
 2.3 Is there an economic interpretation of cointegration vectors? 16
 2.3.1 Cointegration with exogenous variables 16
 2.3.2 Should there be many or few cointegrating vectors? 20
 2.4 Alternative tests for cointegration 21
 2.4.1 A note about distributions 22
 2.4.2 Other approaches to cointegration 23
2.5 An application of cointegration: the demand for money 24
 2.5.1 The velocity of M1 and M2 25
 2.5.2 The velocity of the monetary base 28
 2.5.3 Empirical results 28
 2.5.4 Tests for the order of integration 29
 2.5.5 Tests for cointegration using three methodologies 29
 2.5.6 Cointegration using alternative monetary aggregates 32
 2.5.7 Cointegration and the monetary base 34
2.6 Summary and conclusions 35
Appendix to Chapter 2 36

3 Unit Roots and Cointegration for the Economist 43
 Darryl Holden and Roger Perman
 3.1 Introduction 43
 3.2 Stationarity and unit roots 45
 3.2.1 Stationary time series 45
 3.2.2 The first order autoregressive process: AR(1) 45
 3.2.3 Second order autoregressive case: AR(2) 50
 3.3 Testing for unit roots 51
 3.3.1 The Dickey–Fuller tests 51
 3.3.2 The Augmented Dickey–Fuller regression 55
 3.3.3 A suggested sequential procedure for unit root testing 56
 3.3.4 Phillips and Perron tests 59
 3.3.5 Unit root tests and structural breaks 61
 3.3.6 Trend and difference stationarity 63
 3.4 The error correction mechanism (ECM) 64
 3.5 Cointegration 66
 3.5.1 The cointegrating regression 70
 3.5.2 Testing for cointegration 71
 3.5.3 Estimating the ECM 72
 3.5.4 Johansen procedure 74
 3.6 Cointegration and econometric modelling 80
 3.7 Concluding comments 83
Appendix to Chapter 3 84
4 The Significance of Unit Roots and the Pitfalls of Mechanical Statistics

Ron Smith

4.1 Introduction

4.2 Mechanical statistics

4.3 Applied econometrics

4.4 Significance

4.5 Unit roots

4.6 VARs, error correction and cointegration

4.7 Weak exogeneity

4.8 Identification

4.9 Conclusions

5 Unit Roots and Structural Breaks: A Survey of the Literature

Joseph P. Byrne and Roger Perman

5.1 Introduction

5.2 Unit roots and ADF tests

5.3 Exogenous structural breaks

5.4 Endogenous structural breaks

5.5 Non-linear breaks and GLS detrending

5.6 Multiple structural breaks

5.6.1 Two structural breaks

5.6.2 Multiple breaks

5.7 Unit roots and structural breaks: applied papers

5.8 Other issues

5.9 Conclusion

5.10 Software

6 New Unit Root Tests Designed for the Trend-Break Stationary Alternative: Simulation Evidence and Empirical Applications

Amit Sen

6.1 Introduction

6.2 Model and test statistics

6.3 Finite sample size and power

6.4 Empirical applications

6.4.1 Extended Nelson–Plosser data set
6.4.2 Real per capita GDP for 18 OECD countries 191
6.5 Conclusions 192
Appendix A 192
Appendix B 193

7 How to Deal with Structural Breaks in Practical Cointegration Analysis? 195
Roselyne Joyeux
7.1 Introduction 195
7.2 Univariate case 196
7.2.1 Shift in intercept model 196
7.2.2 Shift in mean and trend model 198
7.2.3 Generalization to an AR(k) process 199
7.2.4 Generalization to the case of more than one shift 199
7.3 Multivariate case 200
7.3.1 Shift in intercept model: none of the p time series have a deterministic trend 202
7.3.2 Some or all of the time series follow a trending pattern 203
7.3.3 Some or all of the time series follow a trending pattern in each sub-sample and the cointegrating relations are stationary in each sub-sample (with possibly a broken constant level); trend breaks are allowed only in the non-stationary series 203
7.3.4 Unit root tests 203
7.4 Empirical illustration: A German money-demand system 203
7.4.1 Description 203
7.4.2 The analysis 205
7.5 Conclusion 213
Appendix to Chapter 7 213
7A.1 Specification of the model: deterministic components and exogenous variables 215
7A.2 Cointegration tests 215
7A.3 Empirical illustration: a German money-demand system 216
7A.4 Other important matters 221