ECONOMETRIC MODELING AND INFEERENCE

JEAN-PIERRE FLORENS
University of Toulouse

VÉLAYOUDOM MARIMOUTOU
GREQAM, University of Aix-Marseille 2

ANNE PÉGUIN-FEISSOLLE
CNRS and GREQAM, France

Translated by Josef Perktold and Marine Carrasco

Foreword by James J. Heckman
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>I Statistical Methods</td>
<td>1</td>
</tr>
<tr>
<td>1 Statistical Models</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Sample, Parameters, and Sampling Probability Distributions</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Independent and Identically Distributed Models</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Dominated Models, Likelihood Function</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Marginal and Conditional Models</td>
<td>10</td>
</tr>
<tr>
<td>2 Sequential Models and Asymptotics</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Sequential Stochastic Models and Asymptotics</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Convergence in Probability and Almost Sure Convergence – Law of Large Numbers</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Convergence in Distribution and Central Limit Theorem</td>
<td>25</td>
</tr>
<tr>
<td>2.5 Noncausality and Exogeneity in Dynamic Models</td>
<td>27</td>
</tr>
<tr>
<td>2.5.1 Wiener-Granger Causality</td>
<td>28</td>
</tr>
<tr>
<td>2.5.2 Exogeneity</td>
<td>30</td>
</tr>
<tr>
<td>3 Estimation by Maximization and by the Method of Moments</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Estimation</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Moment Conditions and Maximization</td>
<td>39</td>
</tr>
<tr>
<td>3.4 Estimation by the Method of Moments and Generalized Moments</td>
<td>44</td>
</tr>
<tr>
<td>3.5 Asymptotic Properties of Estimators</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents

4 Asymptotic Tests
- 4.1 Introduction
- 4.2 Tests and Asymptotic Tests
- 4.3 Wald Tests
- 4.4 Rao Test
- 4.5 Tests Based on the Comparison of Minima
- 4.6 Test Based on Maximum Likelihood Estimation
- 4.7 Hausman Tests
- 4.8 Encompassing Test

5 Nonparametric Methods
- 5.1 Introduction
- 5.2 Empirical Distribution and Empirical Distribution Function
- 5.3 Density Estimation
 - 5.3.1 Construction of the Kernel Estimator of the Density
 - 5.3.2 Small Sample Properties of the Kernel Estimator and Choices of Window and Kernel
 - 5.3.3 Asymptotic Properties
- 5.4 Semiparametric Methods

6 Simulation Methods
- 6.1 Introduction
- 6.2 Random Number Generators
 - 6.2.1 Inversion of the Distribution Function
 - 6.2.2 Rejection Method
 - 6.2.3 Random Vector Generators
- 6.3 Utilization in Calculation Procedures
 - 6.3.1 Monte Carlo Integration
 - 6.3.2 Simulation-Based Method of Moments
- 6.4 Simulations and Small Sample Properties of Estimators and Tests
- 6.5 Bootstrap and Distribution of the Moment Estimators and of the Density

II Regression Models

7 Conditional Expectation
- 7.1 Introduction
- 7.2 Conditional Expectation
- 7.3 Linear Conditional Expectation
8 Univariate Regression
8.1 Introduction 141
8.2 Linear Regression 142
 8.2.1 The Assumptions of the Linear Regression Model 142
 8.2.2 Estimation by Ordinary Least Squares 144
 8.2.3 Small Sample Properties 148
 8.2.4 Finite Sample Distribution Under the Normality Assumption 151
 8.2.5 Analysis of Variance 156
 8.2.6 Prediction 159
 8.2.7 Asymptotic Properties 160
8.3 Nonlinear Parametric Regression 165
8.4 Misspecified Regression 169
 8.4.1 Properties of the Least Squares Estimators 170
 8.4.2 Comparing the True Regression with Its Approximation 172
 8.4.3 Specification Tests 174

9 Generalized Least Squares Method, Heteroskedasticity, and Multivariate Regression
9.1 Introduction 179
9.2 Allowing for Nuisance Parameters in Moment Estimation 181
9.3 Heteroskedasticity 184
 9.3.1 Estimation 185
 9.3.2 Tests for Homoskedasticity 196
9.4 Multivariate Regression 199

10 Nonparametric Estimation of the Regression
10.1 Introduction 213
10.2 Estimation of the Regression Function by Kernel 214
 10.2.1 Calculation of the Asymptotic Mean Integrated Squared Error 216
 10.2.2 Convergence of AMISE and Asymptotic Normality 221
10.3 Estimating a Transformation of the Regression Function 223
10.4 Restrictions on the Regression Function 228
 10.4.1 Index Models 228
 10.4.2 Additive Models 231

11 Discrete Variables and Partially Observed Models
11.1 Introduction 234
11.2 Various Types of Models 235
11.2.1 Dichotomous Models
11.2.2 Multiple Choice Models
11.2.3 Censored Models
11.2.4 Disequilibrium Models
11.2.5 Sample Selection Models
11.3 Estimation
11.3.1 Nonparametric Estimation
11.3.2 Semiparametric Estimation by Maximum Likelihood
11.3.3 Maximum Likelihood Estimation

III Dynamic Models

12 Stationary Dynamic Models
12.1 Introduction
12.2 Second Order Processes
12.3 Gaussian Processes
12.4 Spectral Representation and Autocovariance Generating Function
12.5 Filtering and Forecasting
12.6 Stationary $ARMA$ Processes
12.7 Spectral Representation of an $ARMA(p, q)$ Process
12.8 Estimation of $ARMA$ Models
12.9 Multivariate Processes
12.10 Interpretation of a $VAR(p)$ Model Under Its $MA(\infty)$ Form
12.11 Estimation of \(V AR(p) \) Models 296
12.11.1 Maximum Likelihood Estimation of \(\Pi \) 298
12.11.2 Maximum Likelihood Estimation of \(\Omega \) 300
12.11.3 Asymptotic Distribution of \(\widehat{\Pi} \) and of \(\widehat{\Omega} \) 301

13 Nonstationary Processes and Cointegration 304
13.1 Introduction 304
13.2 Asymptotic Properties of Least Squares Estimators of \(I(1) \) Processes 306
13.3 Analysis of Cointegration and Error Correction Mechanism 325
13.3.1 Cointegration and \(MA \) Representation 326
13.3.2 Cointegration in a \(V AR \) Model in Levels 327
13.3.3 Triangular Representation 329
13.3.4 Estimation of a Cointegrating Vector 330
13.3.5 Maximum Likelihood Estimation of an Error Correction Model Admitting a Cointegrating Relation 335
13.3.6 Cointegration Test Based on the Canonical Correlations: Johansen's Test 338

14 Models for Conditional Variance 341
14.1 Introduction 341
14.2 Various Types of ARCH Models 341
14.3 Estimation Method 346
14.4 Tests for Conditional Homoskedasticity 357
14.5 Some Specificities of ARCH-Type Models 361
14.5.1 Stationarity 361
14.5.2 Leptokurticity 362
14.5.3 Various Conditional Distributions 363

15 Nonlinear Dynamic Models 366
15.1 Introduction 366
15.2 Case Where the Conditional Expectation Is Continuously Differentiable 367
15.2.1 Definitions 367
15.2.2 Conditional Moments and Marginal Moments in the Homoskedastic Case: Optimal Instruments 368
15.2.3 Heteroskedasticity 372
15.2.4 Modifying of the Set of Conditioning Variables: Kernel Estimation of the Asymptotic Variance 373
15.3 Case Where the Conditional Expectation Is Not Continuously Differentiable: Regime-Switching Models 376
 15.3.1 Presentation of a Few Examples 377
 15.3.2 Problem of Estimation 379
15.4 Linearity Test 383
 15.4.1 All Parameters Are Identified Under H_0 383
 15.4.2 The Problem of the Nonidentification of Some Parameters Under H_0 387

IV Structural Modeling 393

16 Identification and Overidentification in Structural Modeling 395
 16.1 Introduction 395
 16.2 Structural Model and Reduced Form 396
 16.3 Identification: The Example of Simultaneous Equations 398
 16.3.1 General Definitions 398
 16.3.2 Linear i.i.d. Simultaneous Equations Models 401
 16.3.3 Linear Dynamic Simultaneous Equations Models 407
 16.4 Models from Game Theory 410
 16.5 Overidentification 414
 16.5.1 Overidentification in Simultaneous Equations Models 417
 16.5.2 Overidentification and Moment Conditions 418
 16.5.3 Overidentification and Nonparametric Models 419

17 Simultaneity 421
 17.1 Introduction 421
 17.2 Simultaneity and Simultaneous Equations 422
 17.3 Endogeneity, Exogeneity, and Dynamic Models 425
 17.4 Simultaneity and Selection Bias 428
 17.5 Instrumental Variables Estimation 431
 17.5.1 Introduction 431
 17.5.2 Estimation 433
 17.5.3 Optimal Instruments 437
 17.5.4 Nonparametric Approach and Endogenous Variables 439
 17.5.5 Test of Exogeneity 442

18 Models with Unobservable Variables 446
 18.1 Introduction 446
 18.2 Examples of Models with Unobservable Variables 448
18.2.1 Random-Effects Models and Random-Coefficient Models 448
18.2.2 Duration Models with Unobserved Heterogeneity 450
18.2.3 Errors-in-Variables Models 453
18.2.4 Partially Observed Markov Models and State Space Models 454
18.3 Comparison Between Structural Model and Reduced Form 456
18.3.1 Duration Models with Heterogeneity and Spurious Dependence on the Duration 457
18.3.2 Errors-in-Variables Model and Transformation of the Coefficients of the Linear Regression 459
18.3.3 Markov Models with Unobservable Variables and Spurious Dynamics of the Model 460
18.4 Identification Problems 461
18.5 Estimation of Models with Unobservable Variables 462
18.5.1 Estimation Using a Statistic Independent of the Unobservables 462
18.5.2 Maximum Likelihood Estimation: EM Algorithm and Kalman Filter 464
18.5.3 Estimation by Integrated Moments 469
18.6 Counterfactuals and Treatment Effects 470

Bibliography 477
Index 493