Contents

Introduction

1 The Black–Scholes Theory of Derivative Pricing
 1.1 Market Model
 1.2 Derivative Contracts
 1.3 Replicating Strategies
 1.4 Risk-Neutral Pricing
 1.5 Risk-Neutral Expectations and Partial Differential Equations
 1.6 American Options and Free Boundary Problems
 1.7 Path-Dependent Derivatives
 1.8 First-Passage Structural Approach to Default
 1.9 Multidimensional Stochastic Calculus
 1.10 Complete Market

2 Introduction to Stochastic Volatility Models
 2.1 Implied Volatility Surface
 2.2 Local Volatility
 2.3 Stochastic Volatility Models
 2.4 Derivative Pricing
 2.5 General Results on Stochastic Volatility Models
 2.6 Summary and Conclusions

3 Volatility Time Scales
 3.1 A Simple Picture of Fast and Slow Time Scales
 3.2 Ergodicity and Mean-Reversion
 3.3 Examples of Mean-Reverting Processes
 3.4 Time Scales in Synthetic Returns Data
 3.5 Time Scales in Market Data
 3.6 Multiscale Models
Contents

4 **First-Order Perturbation Theory** 121

4.1 Option Pricing under Multiscale Stochastic Volatility 121

4.2 Formal Regular and Singular Perturbation Analysis 125

4.3 Parameter Reduction 135

4.4 First-Order Approximation: Summary and Discussion 137

4.5 Accuracy of First-Order Approximation 138

5 **Implied Volatility Formulas and Calibration** 148

5.1 Approximate Call Prices and Implied Volatilities 149

5.2 Calibration Procedure 154

5.3 Illustration with S&P 500 Data 155

5.4 Maturity Cycles 163

5.5 Higher-Order Corrections 174

6 **Application to Exotic Derivatives** 179

6.1 European Binary Options 179

6.2 Barrier Options 181

6.3 Asian Options 185

7 **Application to American Derivatives** 189

7.1 American Options Valuation under Stochastic Volatility 189

7.2 Stochastic Volatility Correction for American Put 190

7.3 Parameter Reduction 196

7.4 Summary 197

8 **Hedging Strategies** 199

8.1 Black–Scholes Delta Hedging 200

8.2 The Strategy and its Cost 200

8.3 Mean Self-Financing Hedging Strategy 206

8.4 A Strategy with Frozen Parameters 209

8.5 Strategies Based on Implied Volatilities 217

8.6 Martingale Approach to Pricing 220

8.7 Non-Markovian Models of Volatility 226

9 **Extensions** 232

9.1 Dividends and Varying Interest Rates 232

9.2 Probabilistic Representation of the Approximate Prices 237

9.3 Second-Order Correction from Fast Scale 238

9.4 Second-Order Corrections from Slow and Fast Scales 247

9.5 Periodic Day Effect 249

9.6 Markovian Jump Volatility Models 251

9.7 Multidimensional Models 254

10 **Around the Heston Model** 259

10.1 The Heston Model 260

10.2 Approximations to the Heston Model 265
10.3 A Fast Mean-Reverting Correction to the Heston Model 271
10.4 Large Deviations and Short Maturity Asymptotics 276

11 Other Applications 283
11.1 Application to Variance Reduction in Monte Carlo Computations 283
11.2 Portfolio Optimization under Stochastic Volatility 287
11.3 Application to CAPM Forward-Looking Beta Estimation 296

12 Interest Rate Models 307
12.1 The Vasicek Model 307
12.2 The Bond Price and its Expansion 315
12.3 The Quadratic Model 327
12.4 The CIR Model 330
12.5 Options on Bonds 335

13 Credit Risk I: Structural Models with Stochastic Volatility 342
13.1 Single-Name Credit Derivatives 342
13.2 Multiname Credit Derivatives 353

14 Credit Risk II: Multiscale Intensity-Based Models 377
14.1 Background on Stochastic Intensity Models 377
14.2 Multiname Credit Derivatives 385
14.3 Symmetric Vasicek Model 388
14.4 Homogeneous Group Structure 402

15 Epilogue 424

References 430
Index 439