Contents

About the Author xxi

PREAMBLE 1

1 Financial Machine Learning as a Distinct Subject 3
 1.1 Motivation, 3
 1.2 The Main Reason Financial Machine Learning Projects Usually Fail, 4
 1.2.1 The Sisyphus Paradigm, 4
 1.2.2 The Meta-Strategy Paradigm, 5
 1.3 Book Structure, 6
 1.3.1 Structure by Production Chain, 6
 1.3.2 Structure by Strategy Component, 9
 1.3.3 Structure by Common Pitfall, 12
 1.4 Target Audience, 12
 1.5 Requisites, 13
 1.6 FAQs, 14
 1.7 Acknowledgments, 18
 Exercises, 19
 References, 20
 Bibliography, 20

PART 1 DATA ANALYSIS 21

2 Financial Data Structures 23
 2.1 Motivation, 23
2.2 Essential Types of Financial Data, 23
 2.2.1 Fundamental Data, 23
 2.2.2 Market Data, 24
 2.2.3 Analytics, 25
 2.2.4 Alternative Data, 25
2.3 Bars, 25
 2.3.1 Standard Bars, 26
 2.3.2 Information-Driven Bars, 29
2.4 Dealing with Multi-Product Series, 32
 2.4.1 The ETF Trick, 33
 2.4.2 PCA Weights, 35
 2.4.3 Single Future Roll, 36
2.5 Sampling Features, 38
 2.5.1 Sampling for Reduction, 38
 2.5.2 Event-Based Sampling, 38
Exercises, 40
References, 41

3 Labeling
 3.1 Motivation, 43
 3.2 The Fixed-Time Horizon Method, 43
 3.3 Computing Dynamic Thresholds, 44
 3.4 The Triple-Barrier Method, 45
 3.5 Learning Side and Size, 48
 3.6 Meta-Labeling, 50
 3.7 How to Use Meta-Labeling, 51
 3.8 The Quantamental Way, 53
 3.9 Dropping Unnecessary Labels, 54
Exercises, 55
Bibliography, 56

4 Sample Weights
 4.1 Motivation, 59
 4.2 Overlapping Outcomes, 59
 4.3 Number of Concurrent Labels, 60
 4.4 Average Uniqueness of a Label, 61
 4.5 Bagging Classifiers and Uniqueness, 62
 4.5.1 Sequential Bootstrap, 63
 4.5.2 Implementation of Sequential Bootstrap, 64
6.6 Bagging vs. Boosting in Finance, 100
6.7 Bagging for Scalability, 101
Exercises, 101
References, 102
Bibliography, 102

7 Cross-Validation in Finance

7.1 Motivation, 103
7.2 The Goal of Cross-Validation, 103
7.3 Why K-Fold CV Fails in Finance, 104
7.4 A Solution: Purged K-Fold CV, 105
 7.4.1 Purging the Training Set, 105
 7.4.2 Embargo, 107
 7.4.3 The Purged K-Fold Class, 108
7.5 Bugs in Sklearn’s Cross-Validation, 109
Exercises, 110
Bibliography, 111

8 Feature Importance

8.1 Motivation, 113
8.2 The Importance of Feature Importance, 113
8.3 Feature Importance with Substitution Effects, 114
 8.3.1 Mean Decrease Impurity, 114
 8.3.2 Mean Decrease Accuracy, 116
8.4 Feature Importance without Substitution Effects, 117
 8.4.1 Single Feature Importance, 117
 8.4.2 Orthogonal Features, 118
8.5 Parallelized vs. Stacked Feature Importance, 121
8.6 Experiments with Synthetic Data, 122
Exercises, 127
References, 127

9 Hyper-Parameter Tuning with Cross-Validation

9.1 Motivation, 129
9.2 Grid Search Cross-Validation, 129
9.3 Randomized Search Cross-Validation, 131
 9.3.1 Log-Uniform Distribution, 132
9.4 Scoring and Hyper-parameter Tuning, 134
PART 3 BACKTESTING

10 Bet Sizing

10.1 Motivation, 141
10.2 Strategy-Independent Bet Sizing Approaches, 141
10.3 Bet Sizing from Predicted Probabilities, 142
10.4 Averaging Active Bets, 144
10.5 Size Discretization, 144
10.6 Dynamic Bet Sizes and Limit Prices, 145
Exercises, 148
References, 149
Bibliography, 149

11 The Dangers of Backtesting

11.1 Motivation, 151
11.2 Mission Impossible: The Flawless Backtest, 151
11.3 Even If Your Backtest Is Flawless, It Is Probably Wrong, 152
11.4 Backtesting Is Not a Research Tool, 153
11.5 A Few General Recommendations, 153
11.6 Strategy Selection, 155
Exercises, 158
References, 158
Bibliography, 159

12 Backtesting through Cross-Validation

12.1 Motivation, 161
12.2 The Walk-Forward Method, 161
 12.2.1 Pitfalls of the Walk-Forward Method, 162
12.3 The Cross-Validation Method, 162
12.4 The Combinatorial Purged Cross-Validation Method, 163
 12.4.1 Combinatorial Splits, 164
 12.4.2 The Combinatorial Purged Cross-Validation Backtesting Algorithm, 165
 12.4.3 A Few Examples, 165
Exercises, 168
References, 169
Bibliography, 170
15 Understanding Strategy Risk

15.1 Motivation, 211
15.2 Symmetric Payouts, 211
15.3 Asymmetric Payouts, 213
15.4 The Probability of Strategy Failure, 216
15.4.1 Algorithm, 217
15.4.2 Implementation, 217

Exercises, 219
References, 220

16 Machine Learning Asset Allocation

16.1 Motivation, 221
16.2 The Problem with Convex Portfolio Optimization, 221
16.3 Markowitz’s Curse, 222
16.4 From Geometric to Hierarchical Relationships, 223
16.4.1 Tree Clustering, 224
16.4.2 Quasi-Diagonalization, 229
16.4.3 Recursive Bisection, 229
16.5 A Numerical Example, 231
16.6 Out-of-Sample Monte Carlo Simulations, 234
16.7 Further Research, 236
16.8 Conclusion, 238

Appendices, 239
16.A.1 Correlation-based Metric, 239
16.A.2 Inverse Variance Allocation, 239
16.A.3 Reproducing the Numerical Example, 240
16.A.4 Reproducing the Monte Carlo Experiment, 242

Exercises, 244
References, 245

PART 4 USEFUL FINANCIAL FEATURES

17 Structural Breaks

17.1 Motivation, 249
17.2 Types of Structural Break Tests, 249
17.3 CUSUM Tests, 250
 17.3.1 Brown-Durbin-Evans CUSUM Test on Recursive Residuals, 250
 17.3.2 Chu-Stinchcombe-White CUSUM Test on Levels, 251
17.4 Explosiveness Tests, 251
 17.4.1 Chow-Type Dickey-Fuller Test, 251
 17.4.2 Supremum Augmented Dickey-Fuller, 252
 17.4.3 Sub- and Super-Martingale Tests, 259

Exercises, 261
References, 261

18 Entropy Features

18.1 Motivation, 263
18.2 Shannon's Entropy, 263
18.3 The Plug-in (or Maximum Likelihood) Estimator, 264
18.4 Lempel-Ziv Estimators, 265
18.5 Encoding Schemes, 269
 18.5.1 Binary Encoding, 270
 18.5.2 Quantile Encoding, 270
 18.5.3 Sigma Encoding, 270
18.6 Entropy of a Gaussian Process, 271
18.7 Entropy and the Generalized Mean, 271
18.8 A Few Financial Applications of Entropy, 275
 18.8.1 Market Efficiency, 275
 18.8.2 Maximum Entropy Generation, 275
 18.8.3 Portfolio Concentration, 275
 18.8.4 Market Microstructure, 276

Exercises, 277
References, 278
Bibliography, 279

19 Microstructural Features

19.1 Motivation, 281
19.2 Review of the Literature, 281
19.3 First Generation: Price Sequences, 282
 19.3.1 The Tick Rule, 282
 19.3.2 The Roll Model, 282
19.3.3 High-Low Volatility Estimator, 283
19.3.4 Corwin and Schultz, 284

19.4 Second Generation: Strategic Trade Models, 286
19.4.1 Kyle's Lambda, 286
19.4.2 Amihud's Lambda, 288
19.4.3 Hasbrouck's Lambda, 289

19.5 Third Generation: Sequential Trade Models, 290
19.5.1 Probability of Information-based Trading, 290
19.5.2 Volume-Synchronized Probability of Informed Trading, 292

19.6 Additional Features from Microstructural Datasets, 293
19.6.1 Distribution of Order Sizes, 293
19.6.2 Cancellation Rates, Limit Orders, Market Orders, 293
19.6.3 Time-Weighted Average Price Execution Algorithms, 294
19.6.4 Options Markets, 295
19.6.5 Serial Correlation of Signed Order Flow, 295

19.7 What Is Microstructural Information?, 295
Exercises, 296
References, 298

PART 5 HIGH-PERFORMANCE COMPUTING RECIPES

20 Multiprocessing and Vectorization

20.1 Motivation, 303
20.2 Vectorization Example, 303
20.3 Single-Thread vs. Multithreading vs. Multiprocessing, 304
20.4 Atoms and Molecules, 306
20.4.1 Linear Partitions, 306
20.4.2 Two-Nested Loops Partitions, 307
20.5 Multiprocessing Engines, 309
20.5.1 Preparing the Jobs, 309
20.5.2 Asynchronous Calls, 311
20.5.3 Unwrapping the Callback, 312
20.5.4 Pickle/Unpickle Objects, 313
20.5.5 Output Reduction, 313
20.6 Multiprocessing Example, 315
Exercises, 316
Reference, 317
Bibliography, 317

21 Brute Force and Quantum Computers

21.1 Motivation, 319
21.2 Combinatorial Optimization, 319
21.3 The Objective Function, 320
21.4 The Problem, 321
21.5 An Integer Optimization Approach, 321
 21.5.1 Pigeonhole Partitions, 321
 21.5.2 Feasible Static Solutions, 323
 21.5.3 Evaluating Trajectories, 323
21.6 A Numerical Example, 325
 21.6.1 Random Matrices, 325
 21.6.2 Static Solution, 326
 21.6.3 Dynamic Solution, 327
Exercises, 327
References, 328

22 High-Performance Computational Intelligence and Forecasting Technologies

Kesheng Wu and Horst D. Simon

22.1 Motivation, 329
22.2 Regulatory Response to the Flash Crash of 2010, 329
22.3 Background, 330
22.4 HPC Hardware, 331
22.5 HPC Software, 335
 22.5.1 Message Passing Interface, 335
 22.5.2 Hierarchical Data Format 5, 336
 22.5.3 In Situ Processing, 336
 22.5.4 Convergence, 337
22.6 Use Cases, 337
 22.6.1 Supernova Hunting, 337
 22.6.2 Blobs in Fusion Plasma, 338
 22.6.3 Intraday Peak Electricity Usage, 340
 22.6.4 The Flash Crash of 2010, 341
 22.6.5 Volume-synchronized Probability of Informed Trading Calibration, 346