Karl-Heinrich Hartge and Rainer Horn

Essential Soil Physics
An introduction to soil processes, functions, structure and mechanics

1st edition, based on the 4th, completely revised and extended German edition

With 186 figures and 24 tables

edited by
Robert Horton
Rainer Horn
Jörg Bachmann
Stephan Peth

Schweizerbart Science Publishers · 2016
Contents

Preface

Introduction 10
Soils: integral part of our environment ... 10
Soil characteristics .. 11

1 Grain size distribution: texture 13
1.1 Classification .. 13
1.1.1 Grain sizes .. 14
1.1.2 Grain shapes .. 15
1.1.3 Grain mixtures .. 17
1.2 Common soil textures and their origin ... 20
1.2.1 Equation of sedimentation .. 22
1.2.2 Separation processes .. 22
1.3 Spatial distribution of textures .. 24
1.4 Modification of grain size distributions in soils 25
1.5 Grain size distribution and other soil properties 26
1.6 Methods to measure grain size distributions 29
Problems Chapter 1 .. 30

2 Soil structure and structural functions 32
2.1 Soil structure and internal morphology .. 32
2.2 Bulk density, particle density .. 34
2.3 Pore volume and void ratio .. 35
2.3.1 Theoretical quantities to describe pore volumes 36
2.3.1.1 Influence of grain size and shape on pore volume 36
2.3.1.2 Effect of particle size .. 37
2.3.2 Number of grain contacts ... 38
2.3.2.1 Relationship of contact number and pore volume fraction 38
2.3.2.2 Natural grain size distributions and aggregates 40
2.3.3 Influence of grain contact points on soil pedogenesis 40
2.4 Pore size distributions .. 42
2.4.1 Subdividing pore sizes ... 43
2.4.2 Shapes, sizes of pores, and modes of pore formation 45
2.4.3 Effects of pore size distribution on soil quality 46
Problems Chapter 2 .. 47

3 Mechanical and hydraulic forces in soils 48
3.1 Stability and the spatial arrangement of grains 48
3.1.1 Forces and stresses in soils ... 48
3.1.2 Subdivision of the forces and stresses within soils
3.1.2.1 Particle weight
3.1.2.2 Loads transmitted by solid phases of soils
3.1.2.3 Weight (overburden) stresses transmitted within the solid phase
3.1.2.4 Forces between the surfaces of adjacent particles
3.1.3 Stresses in three-dimensional space
3.2 Soil strength: the balance of forces
3.2.1 Shear resistance, a soil property
3.2.1.1 Shear resistance of soils and their determination
3.3 Stress strain relationship and time-dependent settlement
3.3.1 Stress strain relationship in soils
3.3.2 Time dependent settlement behavior of soils
3.3.3 The meaning of neutral stresses during loading
3.4 Stress-, strain-, and deformation processes in three-dimensional space
3.4.1 Stress and strain in three-dimensional space
3.4.2 Stress propagation within soils
3.4.3 Base failure as the result of the active and passive Rankine state
3.5 Flow behavior of soils: stresses between individual soil particles
3.6 Influence of soil properties on shear resistance
3.7 Mechanical changes of soil structure
3.7.1 Effects of anthropogenic activities on soils
3.7.2 Effects of animal activity and plant growth
3.7.3 Freezing effects
3.7.4 Soil compaction in civil engineering and construction
Problems Chapter 3

4 Interactions between water and soil
4.1 Adsorption of water in soils
4.1.1 Adsorption mechanisms
4.1.2 Properties of water adsorbed on soil components
4.2 Flocculation and peptization of soil particles
4.3 Shrinkage of soils
4.3.1 Causes of soil shrinkage
4.3.2 Shrinkage in soils
4.4 Swelling of soils
4.4.1 Mechanisms of swelling: swelling pressure
4.4.2 Inhibition of swelling
4.5 Cracking up: crack formation in soils
4.6 Water as a factor of soil stability
4.6.1 Static water pressure
4.6.2 Flow pressure in soils
4.7 Wetting properties of soils
4.7.1 Causes and occurrence of inhibited wetting of soil particle surfaces
4.7.2 Contact angles and capillarity
4.7.3 Documenting wetting properties
4.7.4 Impact of wetting properties on the environmental and habitat functions of soils
4.8 Electrical flow potentials in soils
4.9 Aggregate shapes and functions .. 113
4.9.1 Natural aggregate-forming processes .. 114
4.9.2 Anthropogenic modification of soil aggregates 118
4.10 Effects of aggregate size, shape and age 118
Problems Chapter 4 .. 120

5 Distribution and hydrostatics of soil water .. 121
5.1 Distribution and origin of water in soils .. 121
5.2 Forces in soil water .. 122
5.3 The groundwater surface as reference plane 124
5.4 Soil water potential .. 125
5.4.1 Total water potential and component water potentials 126
5.4.1.1 Matric potential Ψ_m .. 127
5.4.1.2 Gravitational potential Ψ_z .. 127
5.4.1.3 Osmotic potential Ψ_o .. 128
5.4.1.4 Overburden or load potential Ψ_{Ω} 128
5.4.1.5 Pressure potential Ψ_p .. 129
5.4.2 Combining component potentials .. 129
5.4.3 Instruments for measuring soil water potentials 130
5.5 Equilibrium water potential .. 132
5.6 Relationship between matric potential and water content 133
5.6.1 Effect of grain size distribution on the matric potential/water content relationship 135
5.6.2 Influence of structure on the shape of the matric potential/water content relationship .. 135
5.6.3 Hysteresis of the matric potential/water content curve 137
5.6.4 Measuring matric potential/water content curves 137
5.6.5 Mathematical description of the matric potential–water content relationship ... 139
Problems Chapter 5 .. 139

6 Movement of water within the soil .. 141
6.1 Water movement in water saturated soil .. 141
6.1.1 Fluid-dynamic phenomena in soils ... 141
6.1.2 Flow Fields .. 145
6.1.3 Boundary conditions and spatial limits of flow fields 145
6.1.4 One-dimensional flow ... 146
6.1.5 Two- and three-dimensional flows .. 148
6.2 Water movement in unsaturated soil .. 151
6.3 Transient flow ... 153
6.3.1 Hydraulic diffusivity ... 157
6.4 Hydraulic conductivity as a soil property 158
6.5 Vapor transport ... 166
6.6 Infiltration .. 167
6.7 Drainage ... 172
6.8 Evaporation ... 179
Problems Chapter 6 .. 186
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction of mechanical and hydraulic processes</td>
<td>256</td>
</tr>
<tr>
<td>10.2.1 Mechanical and hydraulic soil deformation</td>
<td>257</td>
</tr>
<tr>
<td>10.2.2 Pore function changes resulting from mechanical and hydraulic stresses</td>
<td>259</td>
</tr>
<tr>
<td>10.2.3 Interactions between hydraulic pore function and mechanical parameters</td>
<td>262</td>
</tr>
<tr>
<td>10.2.4 Effects of soil management on physical parameters</td>
<td>262</td>
</tr>
<tr>
<td>10.3 Modification of the hydraulic stress state</td>
<td>264</td>
</tr>
<tr>
<td>10.3.1 Drainage</td>
<td>265</td>
</tr>
<tr>
<td>10.3.2 Irrigation</td>
<td>268</td>
</tr>
<tr>
<td>10.3.3 Percolation</td>
<td>270</td>
</tr>
<tr>
<td>10.4 Modification of the mechanical stress state</td>
<td>271</td>
</tr>
<tr>
<td>10.4.1 Compaction</td>
<td>271</td>
</tr>
<tr>
<td>10.4.2 Loosening soils</td>
<td>272</td>
</tr>
<tr>
<td>10.4.3 Material rearrangement</td>
<td>273</td>
</tr>
<tr>
<td>Problems Chapter 10</td>
<td>275</td>
</tr>
<tr>
<td>11 Soil erosion</td>
<td>278</td>
</tr>
<tr>
<td>11.1 Soil erosion: general principles</td>
<td>278</td>
</tr>
<tr>
<td>11.1.1 Delamination of particles or aggregates</td>
<td>279</td>
</tr>
<tr>
<td>11.2 Approaches to preventing erosion</td>
<td>283</td>
</tr>
<tr>
<td>11.2.1 Erodibility of soils</td>
<td>284</td>
</tr>
<tr>
<td>11.2.2 Erosivity of wind and water</td>
<td>285</td>
</tr>
<tr>
<td>11.3 Erosion models</td>
<td>285</td>
</tr>
<tr>
<td>11.3.1 Soil erosion by water</td>
<td>286</td>
</tr>
<tr>
<td>11.3.2 Soil erosion by wind</td>
<td>288</td>
</tr>
<tr>
<td>Problems Chapter 11</td>
<td>288</td>
</tr>
<tr>
<td>12 Solute transport and filter processes in soils</td>
<td>291</td>
</tr>
<tr>
<td>12.1 Solute transport: basics</td>
<td>292</td>
</tr>
<tr>
<td>12.1.1 Breakthrough curves in porous media</td>
<td>292</td>
</tr>
<tr>
<td>12.1.2 Molecular diffusion</td>
<td>294</td>
</tr>
<tr>
<td>12.1.3 Convective flux and hydrodynamic dispersion</td>
<td>296</td>
</tr>
<tr>
<td>12.1.4 Adsorption</td>
<td>297</td>
</tr>
<tr>
<td>12.1.5 Convection-dispersion model of solute transport in soils</td>
<td>298</td>
</tr>
<tr>
<td>12.1.6 Additional factors influencing solute transport</td>
<td>300</td>
</tr>
<tr>
<td>12.1.7 Models describing solute transport</td>
<td>301</td>
</tr>
<tr>
<td>12.2 Filtering processes in soils</td>
<td>302</td>
</tr>
<tr>
<td>12.2.1 Filter types</td>
<td>302</td>
</tr>
<tr>
<td>12.2.2 Soils acting as filters</td>
<td>303</td>
</tr>
<tr>
<td>12.2.3 Filter efficiency</td>
<td>304</td>
</tr>
<tr>
<td>12.2.4 Optimizing filtering processes</td>
<td>306</td>
</tr>
<tr>
<td>Problems Chapter 12</td>
<td>307</td>
</tr>
<tr>
<td>13 Future perspectives of soil physics</td>
<td>309</td>
</tr>
<tr>
<td>Solutions to the problems for chapters 1–12</td>
<td>317</td>
</tr>
<tr>
<td>Solutions to problems in chapter 1</td>
<td>317</td>
</tr>
<tr>
<td>Solutions to problems in chapter 2</td>
<td>318</td>
</tr>
<tr>
<td>Solutions to problems in chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>319</td>
</tr>
<tr>
<td>4</td>
<td>321</td>
</tr>
<tr>
<td>5</td>
<td>323</td>
</tr>
<tr>
<td>6</td>
<td>326</td>
</tr>
<tr>
<td>7</td>
<td>331</td>
</tr>
<tr>
<td>8</td>
<td>332</td>
</tr>
<tr>
<td>9</td>
<td>333</td>
</tr>
<tr>
<td>10</td>
<td>336</td>
</tr>
<tr>
<td>11</td>
<td>341</td>
</tr>
<tr>
<td>12</td>
<td>343</td>
</tr>
</tbody>
</table>

14 References

15 Commonly used units and conversion factors

16 Meaning of abbreviations

Basic conversions: density and pore volume

Transport

Derivation of the heat-budget equation

Energy Budget at the soil surface

Tensors

Conversion of data measured in different units

Index