Study on the Hydro-Mechanical Behavior of Fiber Reinforced Fine Grained Soils, with Application to the Preservation of Historical Monuments

Dissertation

as a requirement of the degree of
Doktor-Ingenieur (Dr.-Ing.)

at the Faculty of
Civil and Environmental Engineering
Ruhr-Universität Bochum

submitted by
Houman Soleimani Fard
from Isfahan, Iran

Reviewers
Prof. Dr.-Ing. habil. Tom Schanz
Prof. Dr.-Ing. Norbert Vogt
Prof. Dr.-Ing. Markus König

Bochum, March 2014
Contents

Vorwort des Herausgebers i

Acknowledgements iii

Abstract v

Zusammenfassung vii

1 Introduction 1
 1.1 Background and motivation .. 1
 1.2 Scope and objectives ... 3
 1.3 Organization of the dissertation 4

2 Problems of uprising moisture and possible treatments 5
 2.1 Introduction ... 5
 2.2 Brick preparation method and micro-structure of adobes 6
 2.2.1 Clay-sand mixtures .. 7
 2.2.2 Bonding, fabric and structure 8
 2.2.3 Application of soil mechanics 9
 2.3 Problems arising from uprising moisture 10
 2.4 Proposed countermeasure methods against uprising moisture ... 13
 2.4.1 Creating a physical or chemical barrier 13
 2.4.2 Creating a potential against the capillary potential 14
 2.4.3 Changing the facades and pavements 14
 2.4.4 Concealing anomalies ... 15
 2.4.5 Base ventilation .. 15
 2.5 Approaches of this research 16
 2.6 Summary .. 17
3 Literature review

3.1 Introduction ... 19

3.2 Basics of unsaturated soils 19
 3.2.1 Total potential of soil water 20
 3.2.2 Concept of suction 20
 3.2.2.1 Matric suction 21
 3.2.2.2 Osmotic suction 21
 3.2.3 Suction measurement 21
 3.2.3.1 Direct measurements 22
 3.2.3.2 Indirect measurements 23

3.3 Soil-water characteristics curve (SWCC) 25
 3.3.1 Hysteretic behavior 27

3.4 Effective stress in unsaturated soils 29
 3.4.1 Effective stress approach 29
 3.4.2 Two independent stress variables approach 29

3.5 Shear strength of unsaturated soil 30
 3.5.1 Effective stress approach 30
 3.5.2 Independent state variables approach 30
 3.5.3 Laboratory measurement of shear parameter for unsaturated soil 31

3.6 Plane strain state .. 33
 3.6.1 Plane strain concept in geotechnical engineering 34
 3.6.2 Developed laboratory devices used for plane strain state 37
 3.6.2.1 Devices for saturated and dry conditions 37
 3.6.2.2 Devices for unsaturated conditions 42
 3.6.3 Results of plane strain conditions 43
 3.6.3.1 Shear strength 44
 3.6.3.2 Failure type and shear band inclination 47
 3.6.3.3 Volumetric strain 50

3.7 Fiber-reinforced soil 52
 3.7.1 General .. 52
 3.7.1.1 History 53
 3.7.2 Types of fibers 53
 3.7.2.1 Natural fibers 53
 3.7.2.2 Synthetic fibers 56
 3.7.3 Effects of reinforcement 56
 3.7.3.1 Mechanism of behavior in fiber-reinforced soils 56
3.7.3.2 Compaction .. 58
3.7.3.3 Strength characteristics 59
3.7.3.4 Swelling and shrinkage 62
3.7.3.5 Hydraulic properties 64
3.7.3.6 Desiccation cracks 66
3.8 Hydraulic conductivity 67
3.8.1 General ... 67
3.8.2 Saturated hydraulic conductivity 67
3.8.3 Unsaturated hydraulic conductivity 68
3.8.4 Determination of unsaturated hydraulic conductivity 69
 3.8.4.1 Theoretical methods 69
 3.8.4.2 Experimental methods 72
3.8.5 Uprising moisture 74
 3.8.5.1 Uprising moisture in walls protected with countermeasure methods 75
3.9 Summary .. 76

4 Material used and experimental program 79
4.1 Introduction .. 79
4.2 Materials used 79
 4.2.1 Soil mixture 80
 4.2.2 Straw ... 81
4.3 Properties of material 82
 4.3.1 Basic properties 82
 4.3.2 Proctor compaction 83
 4.3.3 Scanning electron microscopy (SEM) 84
 4.3.4 Porosimetry 87
4.4 Experimental program 89
4.5 Summary .. 90

5 Experimental techniques and procedures 91
5.1 Introduction .. 91
5.2 Techniques and procedures used for SWCC tests 91
 5.2.1 Sample preparation 91
 5.2.2 Pressure plate apparatus (for ATT) 92
 5.2.3 Desiccators (for VET) 93
5.3 Techniques and procedures used for plane strain tests
5.3.1 Sample description
5.3.2 Biaxial device
5.3.2.1 Loading system
5.3.2.2 Double wall technique, inner and outer cells
5.3.2.3 Side platens, top cap, and bottom platen
5.3.2.4 Systems to apply suction
5.3.3 Calibrations
5.3.3.1 Calibration of volume change indicators
5.3.3.2 Calibration of inner cell volume change
5.3.3.3 Calibration of other parts
5.3.4 Test procedure
5.3.4.1 Sample preparation and setup
5.3.4.2 Test procedure for saturated samples
5.3.4.3 Test procedure for unsaturated samples
5.3.5 Repeatability and verification of the results
5.4 Techniques and procedures used for wall tests
5.4.1 Measurements
5.4.1.1 Volumetric water content
5.4.1.2 Deformation
5.4.2 Calibrations
5.4.2.1 Calibration of TDRs
5.4.2.2 Calibration of PIV
5.4.3 Test procedure
5.4.3.1 Sample preparation
5.4.3.2 Description of experiments
5.5 Summary

6 Experimental results
6.1 Introduction
6.2 Results of SWCC tests
6.3 Results of biaxial tests
6.4 Results of wall tests
6.5 Saturated hydraulic conductivity
6.6 Summary
Contents

7 **Analyses and discussions**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>7.2</td>
<td>Discussion of SWCC results</td>
<td>143</td>
</tr>
<tr>
<td>7.2.1</td>
<td>SWCC parameters</td>
<td>147</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Effect of sample and straw size on shrinkage and swelling</td>
<td>148</td>
</tr>
<tr>
<td>7.2.3</td>
<td>SWCC models</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>Discussion of the biaxial results</td>
<td>153</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Shear strength of unsaturated reinforced soil</td>
<td>153</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Volumetric strain</td>
<td>165</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Failure type and shear band inclination</td>
<td>168</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion of the results of the wall tests</td>
<td>170</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Volumetric changes</td>
<td>170</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Numerical simulation</td>
<td>174</td>
</tr>
<tr>
<td>7.4.2.1</td>
<td>unprotected unreinforced wall</td>
<td>175</td>
</tr>
<tr>
<td>7.4.2.2</td>
<td>unprotected reinforced wall</td>
<td>180</td>
</tr>
<tr>
<td>7.4.2.3</td>
<td>protected unreinforced wall</td>
<td>184</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Efficiency of implemented countermeasure method (base ventilation)</td>
<td>188</td>
</tr>
<tr>
<td>7.4.4</td>
<td>An alternative countermeasure method (hole ventilation)</td>
<td>193</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Summary</td>
<td>195</td>
</tr>
</tbody>
</table>

8 **Conclusions and recommendations**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Conclusions</td>
<td>197</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Effect of straw-reinforcement on SWCC</td>
<td>197</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Plane strain shear strength of straw-reinforced soil</td>
<td>198</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Observation of uprising moisture in walls</td>
<td>199</td>
</tr>
<tr>
<td>8.2</td>
<td>Suggested future works</td>
<td>200</td>
</tr>
</tbody>
</table>

Bibliography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic setup of TIB</td>
</tr>
<tr>
<td>2</td>
<td>Various unit parameters</td>
</tr>
<tr>
<td>3</td>
<td>A typical SWCC (Source: E. Halonen et al.)</td>
</tr>
<tr>
<td>4</td>
<td>Exercise/test scenarios</td>
</tr>
<tr>
<td>5</td>
<td>Summary of implemented countermeasure method (base ventilation)</td>
</tr>
<tr>
<td>6</td>
<td>An alternative countermeasure method (hole ventilation)</td>
</tr>
<tr>
<td>7</td>
<td>Examples of plant species</td>
</tr>
<tr>
<td>8</td>
<td>Plant of reinforcement</td>
</tr>
</tbody>
</table>