Contents

PREFACE XVII
ACKNOWLEDGMENTS XIX

1 Introduction to Water Systems 1
1.1 Components of Water Systems 2
1.2 Required Capacity 2
1.3 Sources of Water Supply 3
1.4 Rainwater 4
1.5 Surface Water 5
1.5.1 Continuous Draft 5
1.5.2 Selective Draft 5
1.5.3 Impoundage 5
1.6 Groundwater 6
1.6.1 Springs 8
1.6.2 Wells 8
1.6.3 Infiltration Galleries 8
1.6.4 Recharging Devices 9
1.7 Purification Works 9
1.8 Transmission Works 12
1.9 Distribution Works 12
1.9.1 High and Low Services 14
1.9.2 Fire Supplies 14
1.9.3 Pressures 15
1.9.4 Capacity 15
1.9.5 Service to Premises 15
1.10 Water Systems Management 15
1.10.1 Municipal Supplies 15
1.10.2 Individual Small Supplies 16
1.11 Individual Water Systems 17
Problems/Questions 18
References 19

2 Water Sources: Surface Water 21
2.1 Sources of Surface Water 21
2.2 Safe Yield of Streams 24
2.3 Storage as a Function of Draft and Runoff 24
2.4 Design Storage 25
2.5 Loss by Evaporation, Seepage, and Silting 27
2.5.1 Water-Surface Response 27
2.5.2 Seepage 29
2.5.3 Silting 29
2.6 Area and Volume of Reservoirs 31
2.7 Management of Catchment Areas 32
2.7.1 Upland Areas 32
2.7.2 Lowland Areas 32
2.7.3 Quality Control 32
2.7.4 Swamp Drainage 32
2.8 Reservoir Siting 33
2.9 Reservoir Management 33
2.9.1 Quality Control 34
2.9.2 Evaporation Control 34
2.10 Dams and Dikes 34
2.10.1 Embankment Dams 34
2.10.2 Masonry Dams 35
2.11 Spillways 36
2.12 Intakes 37
2.12.1 River Intakes 37
2.12.2 Lake and Reservoir Intakes 37
2.12.3 Submerged and Exposed Intakes 38
2.12.4 Intake Velocities and Depths 38
2.12.5 Intake Conduits and Pumping Stations 38
2.13 Diversion Works 38
2.14 Collection of Rainwater 39
Problems/Questions 41
References 42

3 Water Sources: Groundwater 45
3.1 Porosity and Effective Porosity 45
3.2 Permeability 47
3.3 Groundwater Geology 47
3.4 Groundwater Situation in The United States 48
3.5 Types of Aquifers 48
3.6 Groundwater Movement 49
3.7 Darcy’s Law 49
3.8 Aquifer Characteristics 50
3.9 Well Hydraulics 52
3.10 Nonsteady Radial Flow 52
3.10.1 Confined Aquifers 52
3.10.2 Semilogarithmic Approximation 56
3.10.3 Recovery Method 58
3.10.4 Unconfined Aquifers 59
3.10.5 Leaky Aquifers 59
3.11 Prediction of Drawdown 60
3.11.1 Constant Discharge 60
3.11.2 Variable Discharge 61
3.11.3 Intermittent Discharge 61
3.12 Multiple-Well Systems 63
3.13 Aquifer Boundaries 67
3.13.1 Recharge Boundaries 67
3.13.2 Location of Aquifer Boundaries 69
3.14 Characteristics of Wells 70
3.14.1 Specific Capacity of a Well 70
3.14.2 Partial Penetration 70
3.14.3 Effective Well Radius 70
3.14.4 Measurement of Well Characteristics 71
3.15 Yield of a Well 71
3.15.1 Maximum Available Drawdown 71
3.15.2 Specific Capacity–Drawdown Curve 72
3.15.3 Maximum Yield 72
3.16 Well Design 73
3.17 Well Construction 74
3.17.1 Dug Wells 75
3.17.2 Driven and Jetted Wells 75
3.17.3 Bored Wells 75
3.17.4 Drilled Wells 75
3.17.5 Collector Wells 75
3.17.6 Pumps 75
3.17.7 Development 76
3.17.8 Testing 76
3.17.9 Sanitary Protection of Wells 76
3.17.10 Maintenance 76
3.18 Evaluation of Aquifer Behavior 77
3.18.1 Hydrologic Equation 77
3.18.2 Safe Yield of an Aquifer 77
3.18.3 Water Budget (Hydrologic Budget) 77
3.19 Groundwater Quality Management 78
3.19.1 Biological Contamination 78
3.19.2 Subsurface Disposal of Liquid Wastes 79
3.20 Groundwater Under the Direct Influence of Surface Water 79
3.20.1 GWUDI Determination: Source Screening Phase 79
3.20.2 GWUDI Determination: Detailed Evaluation Phase 81
3.20.3 Hydrogeologic Assessment 81
3.20.4 Water Quality Assessment 82
3.20.5 Microscopic Particulate Analyses 82
Problems/Questions 84
References 85

4 Quantities of Water Demand 87
4.1 Design Period 87
4.2 Design Population 88
4.2.1 Population Data 88
4.2.2 Population Growth 88
4.2.3 Short-Term Population Estimates 90
4.2.4 Long-Range Population Forecasts 91
4.2.5 Simplified Method for Population Forecasts 92
4.2.6 Population Distribution and Area Density 92
4.3 Water Consumption 92
4.3.1 Domestic Consumption 93
4.3.2 General Urban Water Demands 94
4.3.3 Industrial Water Consumption 95
4.3.4 Rural Water Consumption 96
4.4 Variations or Patterns of Water Demand 96
4.4.1 Domestic Variations 97
4.4.2 Fire Demands 98
4.5 Demand and Drainage Loads of Buildings 104
Problems/Questions 106
References 106

5 Water Hydraulics, Transmission, and Appurtenances 109
5.1 Fluid Mechanics, Hydraulics, and Water Transmission 109
5.1.1 Fluid Mechanics and Hydraulics 109
5.1.2 Transmission Systems 120
5.2 Fluid Transport 121
5.2.1 Rational Equation for Surface Resistance 121
5.2.2 Exponential Equation for Surface Resistance 134
5.2.3 Form Resistance 145
5.2.4 Hydraulic Transients 152
5.3 Capacity and Size of Conduits 152
5.4 Multiple Lines 154
5.5 Cross-Sections 155
5.6 Structural Requirements 155
5.7 Location 156
5.7.1 Line and Grade 156
5.7.2 Vertical and Horizontal Curves 157
5.7.3 Depth of Cover 157
5.8 Materials of Construction 159
5.8.1 Carrying Capacity 159
5.8.2 Strength 159
5.8.3 Durability 160
5.8.4 Transportation 160
5.8.5 Safety 160
5.8.6 Maintenance 160
5.8.7 Leakage 160
5.9 Appurtenances 160
 5.9.1 Gate Valves 160
 5.9.2 Blowoffs 162
 5.9.3 Air Valves 162
 5.9.4 Check Valves 162
 5.9.5 Pressure-Reducing Valves 162
 5.9.6 Pressure-Sustaining Valves 163
 5.9.7 Pressure Breaker Valves 163
 5.9.8 Flow Control Valves 163
 5.9.9 Throttle Control Valves 163
 5.9.10 Manholes 163
 5.9.11 Insulation Joints 163
 5.9.12 Expansion Joints 163
 5.9.13 Anchorages 163
 5.9.14 Other Appurtenances 163
5.10 Additional Hydraulics Topics 164
 5.10.1 Measurement of Fluid Flow and Hydraulic Coefficients 164
 5.10.2 Forces Developed by Moving Fluids 166
 5.10.3 Impulse–Momentum Principles 169
 5.10.4 Drag and Lift Forces 171
Problems/Questions 172
References 178

6 Water Distribution Systems: Components, Design, and Operation 181
 6.1 Distribution Systems 181
 6.1.1 One- and Two-Directional Flow 181
 6.1.2 Distribution Patterns 181
 6.1.3 Pipe Grids 181
 6.1.4 High and Low Services 181
 6.1.5 Service to Premises 182
 6.2 System Components 183
 6.3 System Capacity 185
 6.4 System Pressure 185
 6.5 Field Performance of Existing Systems 186
 6.6 Office Studies of Pipe Networks 187
 6.6.1 Sectioning 187
 6.6.2 Relaxation (Hardy Cross) 190
 6.6.3 Pipe Equivalence 194
 6.6.4 Computer Programming 197
 6.7 Industrial Water Systems 197
 6.8 Management, Operation, and Maintenance of Distribution Systems 197
 6.8.1 General Maintenance Person Asphyxiated While Attempting to Repair Water Leak 198

6.8.2 Plumber Repairing a Water Line Killed When Struck by a Backhoe Bucket 199
6.8.3 Welder Killed Following a 100 ft (30 m) Fall from a Water Tower 201

6.9 Practical Design and Analysis of Water Distribution Systems 202
 6.9.1 Minimum Design Period Requirements 202
 6.9.2 Water Pressure Requirements 202
 6.9.3 Minimum Size Requirements 202
 6.9.4 Velocity Requirements 203
 6.9.5 Pipes and Valves Spacing Requirements 203
 6.9.6 Hydrant Spacing, Location, and Fire Flow Requirements 203
 6.9.7 Air Relief Valve Requirements 203
 6.9.8 Depth of Cover Requirements 203
 6.9.9 Separation of Water Mains from Sources of Contamination 203
 6.9.10 Head Loss of Water System Fittings 204
Problems/Questions 205
References 210

7 Water Distribution Systems: Modeling and Computer Applications 213
 7.1 Watergems Software 213
 7.2 Water Demand Patterns 213
 7.3 Energy Losses and Gains 214
 7.4 Pipe Networks 215
 7.4.1 Conservation of Mass 215
 7.4.2 Conservation of Energy 215
 7.5 Network Analysis 216
 7.5.1 Steady-State Network Hydraulics 216
 7.5.2 Extended-Period Simulation 216
 7.6 Water Quality Modeling 216
 7.6.1 Age Modeling 216
 7.6.2 Trace Modeling 217
 7.6.3 Constituents Modeling 217
 7.6.4 Initial Conditions 217
 7.6.5 Numerical Methods 217
 7.6.6 Discrete Volume Method 217
 7.6.7 Time-Driven Method 218
 7.7 Automated Optimization 218
 7.7.1 Model Calibration 218
 7.7.2 System Design 219
7.8 Practical Applications of Computer-Aided Water Supply System Analysis

- Problems/Questions 233
- References 240

8 Pumping, Storage, and Dual Water Systems 241

- 8.1 Pumps and Pumping Stations 241
- 8.2 Pump Characteristics 241
 - 8.2.1 Power Requirements and Efficiencies of Pumps 244
 - 8.2.2 Cavitation 245
 - 8.2.3 Performance Characteristics 246
- 8.3 Service Storage 248
 - 8.3.1 Equalizing, or Operating, Storage 248
 - 8.3.2 Fire Reserve 249
 - 8.3.3 Emergency Reserve 249
 - 8.3.4 Total Storage 249
- 8.4 Location of Storage 251
- 8.5 Elevation of Storage 251
- 8.6 Types of Distributing Reservoirs 251
- 8.7 Dual Water Supply Systems 257
 - 8.7.1 Background 258
 - 8.7.2 The Nature of the Problems with Drinking Water Quality 258
 - 8.7.3 The Pipes in the Distribution Systems 258
 - 8.7.4 Biofilms and the Problems They Cause 259
 - 8.7.5 The Proposed System 259
- 8.8 Raw Water Intake Structures and Raw Water Pumping Wells 260
 - Problems/Questions 262
 - References 266

9 Cross-Connection Control 267

- 9.1 Introduction 267
- 9.2 Public Health Significance of Cross-Connections 268
 - 9.2.1 Human Blood in the Water System 268
 - 9.2.2 Sodium Hydroxide in the Water Main 268
 - 9.2.3 Heating System Antifreeze in Potable Water 268
 - 9.2.4 Salt Water Pumped into Freshwater Line 269
 - 9.2.5 Paraquat in the Water System 269

9.2.6 Propane Gas in the Water Mains 270

9.2.7 Chlordane and Heptachlor at a Housing Authority 271

9.2.8 Boiler Water Entered High School Drinking Water 271

9.2.9 Car Wash Water in the Street Water Main 272

9.2.10 Health Problems Due to Cross-Connection in an Office Building 275

9.3 Theory of Backflow and Backsiphonage 276

9.3.1 Water Pressure 276

9.3.2 Siphon Theory 277

9.3.3 Backflow 280

9.4 Methods and Devices for the Prevention of Backflow and Backsiphonage 280

9.4.1 Air Gap 281

9.4.2 Barometric Loops 281

9.4.3 Atmospheric Vacuum Breakers 281

9.4.4 Hose Bib Vacuum Breakers 282

9.4.5 Pressure Vacuum Breakers 283

9.4.6 Double Check Valves with an Intermediate Atmospheric Vent 283

9.4.7 Double Check Valves 284

9.4.8 Double Check Detector Check 284

9.4.9 Residential Dual Check 285

9.5 Reduced Pressure Principle Backflow Preventer 285

9.6 Administration of a Cross-Connection Control Program 289

9.6.1 Responsibility 289

9.6.2 Dedicated Line 290

9.6.3 Method of Action 290

9.7 Pressure and Leakage Tests of Water Mains 291

9.7.1 Preparation for Pressure and Leakage Tests 291

9.7.2 Pressure and Leakage Tests 292

9.8 Cross-Connection Control 295

10 Water Quality Characteristics and Drinking Water Standards 297

- 10.1 Objectives of Water-Quality Management 297

- 10.2 Natural Available Water Resources 297
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Public Health Issues and Drinking Water Treatment</td>
<td>298</td>
</tr>
<tr>
<td>10.4</td>
<td>Physical Characteristics and Constituents</td>
<td></td>
</tr>
<tr>
<td>10.4.1</td>
<td>Color</td>
<td>300</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Turbidity and Particle Count</td>
<td>300</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Taste and Odor</td>
<td>301</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Temperature</td>
<td>301</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Foamability</td>
<td>301</td>
</tr>
<tr>
<td>10.5</td>
<td>Chemical Characteristics and Constituents</td>
<td></td>
</tr>
<tr>
<td>10.5.1</td>
<td>Metals</td>
<td>302</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Anions</td>
<td>303</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Alkalinity and pH</td>
<td>304</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Hardness, Calcium and Magnesium, Carbonate and Bicarbonate</td>
<td>304</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Total Dissolved Solids and Conductivity</td>
<td>305</td>
</tr>
<tr>
<td>10.5.6</td>
<td>Dissolved Oxygen</td>
<td>305</td>
</tr>
<tr>
<td>10.5.7</td>
<td>Pesticides</td>
<td>305</td>
</tr>
<tr>
<td>10.5.8</td>
<td>PCBs, CFCs, and Dioxin</td>
<td>305</td>
</tr>
<tr>
<td>10.5.9</td>
<td>Asbestos</td>
<td>306</td>
</tr>
<tr>
<td>10.5.10</td>
<td>Residual Disinfectants</td>
<td>306</td>
</tr>
<tr>
<td>10.5.11</td>
<td>Disinfectant By-products</td>
<td>306</td>
</tr>
<tr>
<td>10.5.12</td>
<td>Other Organic and Inorganic Contaminants</td>
<td>306</td>
</tr>
<tr>
<td>10.6</td>
<td>Biological Characteristics and Constituents</td>
<td></td>
</tr>
<tr>
<td>10.6.1</td>
<td>Bacteria</td>
<td>307</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Protozoa (Including Cryptosporidium and Giardia lamblia)</td>
<td>307</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Worms</td>
<td>308</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Viruses, Fungi, and Algae</td>
<td>308</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Coliform Indicator Parameter</td>
<td>308</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Heterotrophic Plate Count (HPC)</td>
<td>309</td>
</tr>
<tr>
<td>10.6.7</td>
<td>Infections from Water-Related Sources</td>
<td>310</td>
</tr>
<tr>
<td>10.6.8</td>
<td>Reduction of Infections by Water Quality Management</td>
<td>310</td>
</tr>
<tr>
<td>10.7</td>
<td>Radiological Characteristics and Constituents</td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td>Drinking Water Quality Standards</td>
<td>311</td>
</tr>
<tr>
<td>10.9</td>
<td>Industrial Water Quality Standards</td>
<td>313</td>
</tr>
<tr>
<td>10.10</td>
<td>Bathing Waters</td>
<td>317</td>
</tr>
<tr>
<td>10.11</td>
<td>Fishing and Shellfish Waters</td>
<td>317</td>
</tr>
<tr>
<td>10.12</td>
<td>Irrigation Waters</td>
<td>319</td>
</tr>
<tr>
<td>10.13</td>
<td>Quality of Water from Various Sources</td>
<td>319</td>
</tr>
<tr>
<td>10.14</td>
<td>Good Quality Water</td>
<td>320</td>
</tr>
<tr>
<td>10.15</td>
<td>Self-Purification and Storage</td>
<td>320</td>
</tr>
<tr>
<td>10.16</td>
<td>Objectives of Water Examination</td>
<td>321</td>
</tr>
<tr>
<td>10.17</td>
<td>Methods of Examination</td>
<td>321</td>
</tr>
<tr>
<td>10.18</td>
<td>Standard Tests</td>
<td>322</td>
</tr>
<tr>
<td>10.19</td>
<td>Expression of Analytical Results</td>
<td>322</td>
</tr>
<tr>
<td>10.20</td>
<td>Tapping a Source of Water</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Problems/Questions</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>323</td>
</tr>
<tr>
<td>11.1</td>
<td>Purpose of Water Treatment</td>
<td>325</td>
</tr>
<tr>
<td>11.2</td>
<td>Treatment of Raw Water</td>
<td>325</td>
</tr>
<tr>
<td>11.3</td>
<td>Unit Operations and Unit Processes</td>
<td>328</td>
</tr>
<tr>
<td>11.4</td>
<td>Gas Transfer</td>
<td>330</td>
</tr>
<tr>
<td>11.5</td>
<td>Ion Transfer</td>
<td>330</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Chemical Coagulation</td>
<td>330</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Chemical Precipitation</td>
<td>331</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Ion Exchange</td>
<td>331</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Adsorption</td>
<td>332</td>
</tr>
<tr>
<td>11.6</td>
<td>Solute Stabilization</td>
<td>333</td>
</tr>
<tr>
<td>11.7</td>
<td>Solids Transfer</td>
<td>333</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Straining</td>
<td>333</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Sedimentation</td>
<td>333</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Flotation</td>
<td>334</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Filtration</td>
<td>337</td>
</tr>
<tr>
<td>11.8</td>
<td>Nutrient or Molecular Transfer and Interfacial Contact</td>
<td>338</td>
</tr>
<tr>
<td>11.9</td>
<td>Disinfection</td>
<td>339</td>
</tr>
<tr>
<td>11.10</td>
<td>Miscellaneous Operations/Processes</td>
<td>340</td>
</tr>
<tr>
<td>11.11</td>
<td>Coordination of Unit Operations/Processes</td>
<td>340</td>
</tr>
<tr>
<td>11.12</td>
<td>Selection of Water Treatment Technologies</td>
<td>341</td>
</tr>
<tr>
<td>11.12.1</td>
<td>Treated Water Requirements and Influent Characteristics</td>
<td>341</td>
</tr>
<tr>
<td>11.12.2</td>
<td>Existing System Configuration</td>
<td>341</td>
</tr>
<tr>
<td>11.12.3</td>
<td>Water Treatment Costs</td>
<td>341</td>
</tr>
<tr>
<td>11.12.4</td>
<td>Operation Requirements</td>
<td>341</td>
</tr>
<tr>
<td>11.12.5</td>
<td>Pretreatment and Posttreatment Processes</td>
<td>341</td>
</tr>
<tr>
<td>11.12.6</td>
<td>Waste Management</td>
<td>342</td>
</tr>
<tr>
<td>11.12.7</td>
<td>Future Service Area Needs</td>
<td>342</td>
</tr>
<tr>
<td>11.13</td>
<td>Control of Turbidity, Color, and Biological Contamination</td>
<td>342</td>
</tr>
<tr>
<td>11.14</td>
<td>Organic Contaminant Removal</td>
<td>343</td>
</tr>
<tr>
<td>11.15</td>
<td>Inorganic Contaminant Removal and Control</td>
<td>345</td>
</tr>
<tr>
<td>11.15.1</td>
<td>Corrosion Controls</td>
<td>345</td>
</tr>
<tr>
<td>11.15.2</td>
<td>Inorganic Contaminant Removal</td>
<td>345</td>
</tr>
<tr>
<td>11.15.3</td>
<td>Radionuclides Removal and Risk Control</td>
<td>345</td>
</tr>
</tbody>
</table>
12 Chemicals Feeding, Mixing, and Flocculation 363

12.1 Introduction 363
12.2 Handling, Storing, and Feeding Chemicals 363
 12.2.1 Points of Chemical Addition 364
 12.2.2 Chemical Metering Equipment 364
12.3 Rapid Mixing 367
 12.3.1 Mechanical Mixers 369
 12.3.2 In-Line Static Mixers 370
 12.3.3 In-Line Mechanical Blenders 371
 12.3.4 Jet Injection Blending 371
 12.3.5 Coagulant Diffusers 372
 12.3.6 Hydraulic Jumps 372
12.4 Rapid Mixing and Slow Flocculation 372
12.5 Flocculation 373
12.6 Mixing and Stirring Devices 373
 12.6.1 Baffled Channels 373
 12.6.2 Pneumatic Mixing and Stirring 374
 12.6.3 Mechanical Mixing and Stirring 374
12.7 Flocculator Performance 391
 12.7.1 Mixing 391
 12.7.2 Flocculator Inlet and Outlet Structures 392
 12.7.3 Improving Basin Circulation with Baffles 392
12.8 Costs 393
 Problems/Questions 394
 References 395

13 Aeration, Gas Transfer, and Oxidation 397

13.1 Sources of Gases in Water 397
13.2 Objectives of Gas Transfer 397
13.3 Absorption and Desorption of Gases 398
13.4 Rates of Gas Absorption and Desorption 400
13.5 Types of Aerators 402
 13.5.1 Gravity Aerators 402
 13.5.2 Spray Aerators 402
 13.5.3 Air Diffusers 402
 13.5.4 Mechanical Aerators 404
13.6 Factors Governing Gas Transfer 405
 13.6.1 Solubility of Fe and Mn 408
13.7 Design of Gravity Aerators 405
13.8 Design of Fixed-Spray Aerators 406
13.9 Design of Movable-Spray Aerators 406
13.10 Design of Injection Aerators 407
13.11 Mechanical Aerators 408
13.12 Oxidation for Removal of Dissolved Iron and Manganese 408
 13.12.1 Solubility of Fe and Mn 408
 13.12.2 Redox Reactions of Fe and Mn 409
 13.12.3 Precipitation of Fe and Mn 409
 13.12.4 Kinetics of Oxygenation 409
13.13 Removal of Specific Gases 411
 13.13.1 Methane 411
 13.13.2 Carbon Dioxide 411
 13.13.3 Hydrogen Sulfide 411
13.14 Removal of Odors and Tastes 414
 Problems/Questions 414
 References 415

14 Coagulation 417

14.1 Introduction 417
14.2 The Colloidal State 417
 14.2.1 Electrophoretic Properties of Colloids 417
 14.2.2 Hydration 418
 14.2.3 Tyndall Effect 418
 14.2.4 Brownian Movement 418
 14.2.5 Filterability 418
14.3 Colloidal Structure and Stability of Colloids 418
14.4 Destabilization of Colloids 421
 14.4.1 Double-Layer Compression 421
 14.4.2 Adsorption and Charge Neutralization 422
 14.4.3 Entrapment of Particles in Precipitate 422
 14.4.4 Adsorption and Bridging between Particles 422
14.5 Influencing Factors 423
14.5.1 Colloid Concentration 423
14.5.2 Alkalinity and pH 423
14.5.3 Coagulant Dosage and pH 423
14.5.4 Zeta Potential 424
14.5.5 Affinity of Colloids for Water 424
14.5.6 Anions in Solution 425
14.5.7 Cations in Solution 425
14.5.8 Temperature 425
14.6 Coagulants 425
14.6.1 Aluminum Salts 426
14.6.2 Iron Salts 427
14.6.3 Sodium Aluminate 430
14.6.4 Magnesium Coagulant 430
14.6.5 Polymeric Inorganic Salts 430
14.6.6 Organic Polymers 431
14.6.7 Coagulant Aids 432
14.7 Coagulation Control 432
14.7.1 Jar Test 433
14.7.2 Zetameter 433
14.7.3 Streaming Current Detector 434
14.7.4 Colloid Titration for Polyelectrolyte Determination and Coagulation Control 434
Problems/Questions 435
Special Reference 436
References 436

15 Screening, Sedimentation, and Flotation 439

15.1 Treatment Objectives 439
15.2 Screening 439
15.3 Sedimentation 439
15.4 Types of Sedimentation 439
15.4.1 Settling Velocities of Discrete Particles—Class 1 Clarification 440
15.4.2 Hindered Settling of Discrete Particles—Class 2 Clarification 443
15.4.3 Settling of Flocculent Suspensions—Zone Settling 445
15.4.4 Compression Settling 446
15.5 Settling Basins 447
15.5.1 Efficiency of Ideal Settling Basins 447
15.5.2 Reduction in Settling Efficiency by Currents 448
15.5.3 Short-Circuiting and Basin Stability 449
15.5.4 Scour of Bottom Deposits 450
15.5.5 Elements of Tank Design 451
15.6 Upflow Clarification 4
15.7 General Dimensions of Plants 455
15.8 Sludge Removal 456
15.9 Inlet Hydraulics 456
15.10 Outlet Hydraulics 459
15.11 Sedimentation Tank Loading, Detention, and Performance 459
15.11.1 Sedimentation Tank Performance 459
15.11.2 Regulations and Standards 460
15.12 Shallow Depth Settlers 462
15.12.1 Theory of Shallow Depth Settling 462
15.12.2 Tube Settlers 463
15.12.3 Lamella Separator 464
15.13 Gravity Thickening of Sludge 464
15.14 Natural Flotation 467
15.15 Dissolved Air Flotation Process 468
15.15.1 Process Description 468
15.15.2 Process Configurations 468
15.15.3 Factors Affecting Dissolved Air Flotation 469
15.15.4 Dissolved Air Flotation Theory 469
15.15.5 Flotation Design, Operation, and Performance 474
15.15.6 Municipal Potable Water Plants 475
Problems/Questions 480
References 482

16 Conventional Filtration 485

16.1 Granular Water Filters 485
16.2 Granular Wastewater Filters 487
16.3 Granular Filtering Materials 488
16.3.1 Grain Size and Size Distribution 488
16.3.2 Grain Shape and Shape Variation 489
16.4 Preparation of Filter Sand 490
16.5 Hydraulics of Filtration 491
16.5.1 Hydraulics of Stratified Beds 492
16.5.2 Hydraulics of Unstratified Beds 493
16.6 Hydraulics of Fluidized Beds—Filter Backwashing 494
16.7 Removal of Impurities 497
16.8 Kinetics of Filtration 497
17 Alternative and Membrane Filtration Technologies 513

17.1 Introduction of Filtration Technologies 513
 17.1.1 Filtration Overview 513
 17.1.2 Filtration Applications 513

17.2 Direct Filtration 514
 17.2.1 Process Description 514
 17.2.2 System Performance 516

17.3 Slow Sand Filtration 516
 17.3.1 Process Description 516
 17.3.2 System Performance 516
 17.3.3 System Design Considerations 517
 17.3.4 Operation and Maintenance 518

17.4 Package Plant Filtration 518
 17.4.1 General Process Description 518
 17.4.2 Conventional Filtration Package Plants 519
 17.4.3 Tube-Type Clarifier Package Plants 519
 17.4.4 Adsorption Clarifier-Filter Package Plant 519
 17.4.5 Dissolved Air Flotation-Filtration Package Plant 520
 17.4.6 Operation and Maintenance of Package Plants 522

18 Disinfection and Disinfection By-products Control 545

18.1 Purpose of Disinfection 545
18.2 Pathogens, Disinfection, and Disinfectants 545
18.3 Disinfection by Heat 546
18.4 Disinfection by Ultraviolet Light 546
18.5 Disinfection by Chemicals 546
 18.5.1 Oxidizing Chemicals 546
 18.5.2 Metal Ions 547
 18.5.3 Alkalis and Acids 547
 18.5.4 Surface-Active Chemicals 547
 18.5.5 Advanced Oxidation Processes 547

18.6 Theory of Chemical Disinfection 548
18.7 Kinetics of Chemical Disinfection 549
 18.7.1 Time of Contact 549
 18.7.2 Concentration of Disinfectant 551
18.7.3 Temperature of Disinfection 551
18.7.4 Ct Values for Disinfection Process Control 552

18.8 Disinfection by Ozone 554
18.9 Disinfection by Chlorine 556
18.10 Free Available Chlorine and Free Chlorination 556
18.11 Combined Available Chlorine and Chloramination 558
18.12 Breakpoint Reactions of Ammonia 559
18.13 Dechlorination 559
18.14 Disinfection by-Products 560
18.14.1 Formation of Disinfection By-products 560
18.14.2 Strategies for Controlling Disinfection By-products 560

18.15 Chemical Technology of Disinfection 562
18.16 Operational Technology of Chlorination 562
18.16.1 Water Chlorination Applications 564
18.16.2 Additional Chlorination Applications 566
18.16.3 Manageable Variables in Halogenation 566
18.17 Operational Technology of Sodium Hypochlorination 567
18.17.1 Equipment Costs 567
18.17.2 Operating and Maintenance Costs 567
18.17.3 Chemical Costs 568
18.18 Operational Technology of Calcium Hypochlorination 570
18.19 Operational Technology of Chlorine Dioxide Disinfection 570
18.20 Operational Technology of Ozonation 571
18.20.1 Process Description 572
18.20.2 System Design Considerations 573
18.21 Operational Technology of UV Disinfection 574
18.21.1 UV Disinfection System Design Considerations 574
18.21.2 UV Lamp Designs 575
18.21.3 Factors Affecting the Design of the UV Disinfection System 576
18.21.4 UV Transmittance 577
18.21.5 UV Equipment Configuration 577
18.21.6 UV Lamp Age and Quartz Sleeve Fouling 577

18.21.7 UV System Operating and Maintenance Considerations 577
18.21.8 Operation and Maintenance of UV Lamps 578
18.21.9 Operation and Maintenance of the Reactor 578

18.22 Recent Developments in Disinfection Management—Log Removal/Inactivation Credits of Drinking Water Treatment Processes 582
18.22.1 Introduction 582
18.22.2 Surface Water Treatment Rule and Long Term 2 Enhanced Surface Water Treatment Rule 582
18.22.3 Ground Water Rule and Total Coliform Rule 588

Problems/Questions 589
References 591

19 Chemical Precipitation and Water Softening 593

19.1 Chemical Precipitation 593
19.2 Description of Precipitation Process 593
19.2.1 Metals Removal 593
19.2.2 Removal of Fats, Oils, and Greases 594
19.2.3 Phosphorus Removal 594
19.2.4 Removal of Suspended Solids 595
19.2.5 Additional Considerations 595
19.3 Applicability 596
19.4 Advantages and Disadvantages 596
19.5 Design Criteria 596
19.6 Performance—Jar Testing 597
19.7 Operation and Maintenance 597
19.8 Costs 598
19.9 Precipitation of Hardness and Carbonates—Water Softening 598
19.10 Recarbonation After Water Softening 602
19.11 Recovering Lime After Water Softening 602

Problems/Questions 603
References 603

20 Adsorption and Ion Exchange 605

20.1 Adsorption Processes 605
20.2 Adsorption Kinetics and Equilibria 605
20.2.1 Adsorption Kinetics 605
Contents

20.2
- Conditions of Equilibrium 606
- Interpretation of Adsorption Isotherms 608

20.3
- Characteristics of Adsorbents 608
 - Silica Gel 608
 - Activated Carbon 608
 - Polymeric Adsorbents 609
 - Carbon Properties Relating to Adsorption 609

20.4
- Adsorption of Odors and Tastes 610

20.5
- Pilot Carbon Column Tests 612

20.6
- Breakthrough Curve 613

20.7
- Process Technology 614
 - Types of Contact Beds 614
 - Design Criteria of Carbon Beds 615
 - Design of an Adsorption Bed 617
 - Carbon Regeneration Systems 622

20.8
- Ion Exchange 624
 - Advantages and Disadvantages of Ion Exchange 624
 - System Performance 625

20.9
- Ion Exchangers 626
 - Synthetic Ion Exchangers 626
 - Activated Alumina and Zeolite 626

20.10
- The Ion Exchange Process 628

20.11
- Ion Selectivity 630

20.12
- Kinetics of Ion Exchange 631

20.13
- Ion Exchange Technology 632

20.14
- Water Softening by Ion Exchange 633

20.15
- Demineralization 634

20.16
- Concentration of Ions 635

20.17
- Ion Exchange Membranes and Dialysis 635

20.18
- Modular Treatment Units for Removal of Radionuclides 636

20.19
- Case Study I: Nitrate Removal: McFarland, CA 636

20.20
- Case Study II: Fluoride Removal in Gila Bend, AZ 637
 - Problems/Questions 637
 - References 639

21 Chemical Stabilization and Control of Corrosion and Biofilms 641

21.1
- Chemical Stabilization 641

21.2
- Corrosion 643

21.3
- The Corrosion Reaction 644
 - Factors Affecting Corrosion 646
 - Corrosion Indices 646
 - Consumer Complaints 647
 - Scale or Pipe Surface Examination 647
 - Measurement of Corrosion Rate 647

21.4
- Control of Corrosion 648

21.5
- Lead and Copper Corrosion 650
 - Health Effects 650
 - Occurrence as a Corrosion By-product 650
 - Diagnosing and Evaluating the Problem 651
 - Sampling and Chemical Analysis 651

21.6
- Lead Corrosion Control 651
 - Distribution and Plumbing System Design Considerations 652
 - Water Quality Modifications 652
 - Corrosion Inhibitors 654
 - Cathodic Protection 655
 - Coatings and Linings 655

21.7
- Biofilm Control 655
 - Factors That Favor Biofilm Growth 657
 - Biofilm Control Strategies 657

22 Residues Management, Safety, and Emergency Response 661

22.1
- Management of Residues 661

22.2
- Types of Residuals 662

22.3
- Applicable Regulations 663

22.4
- Residual Solids Treatment 663

22.5
- Residuals Disposal 664
 - Underground Injection 664
 - Direct Discharge to Surface Waters 664
 - Discharge to Sewers and WWTP 664
 - Landfilling 665
 - Land Application 665

22.6
- Selection of Management Plans 666

22.7
- Safety and Accident Prevention 670
 - Safety in Valve Vault Design 670
 - Safety in Chemical Handling 671
 - Safety in the Placement of Valves 671
22.10.1 System-Specific Information 675
22.10.2 CWS Roles and Responsibilities 675
22.10.3 Communication Procedures (Who, What, and When) 675
22.10.4 Personnel Safety 676
22.10.5 Identification of Alternate Water Sources 676
22.10.6 Replacement Equipment and Chemical Supplies 677
22.10.7 Property Protection 677
22.10.8 Water Sampling and Monitoring 677
22.11 Putting the ERP Together and ERP Activation 677
22.12 Action Plans 678
22.13 Next Steps 681
Problems/Questions 681
References 682

23 Prevention through Design and System Safety 683

23.1 Introduction to System Safety 683
23.2 Nature and Magnitude of Safety and Health Problems 685
23.3 Risk Assessment Matrix 687
23.3.1 Description 687
23.3.2 Procedures 688
23.3.3 Advantages and Limitations of the Risk Matrix 693
23.4 Failure Modes, Effects, and Criticality Analysis 693
23.4.1 Description 693
23.4.2 Application 693
23.4.3 Procedures 693
23.4.4 Advantages and Limitations 698
23.5 Engineering and Design for Safe Construction 698
23.5.1 Construction Failures 698
23.5.2 Causes of Construction Failures 699

23.6 Construction Safety and Health Management 703
23.6.1 Safety and Health Program Elements 703
23.6.2 Project Safety Rules 704
23.6.3 Training and Worker Orientation 704
23.6.4 New Worker Orientation 704
23.6.5 Accident Investigation and Recordkeeping 706
23.6.6 Safety Budget and Audits 706
23.7 Requirements for Safety in Construction Projects 706
23.7.1 Falls 706
23.7.2 Excavation and Trenching 707
23.7.3 Confined Space Entry 708
23.7.4 Heavy Construction Equipment 709
23.8 Occupational Diseases 710
23.8.1 System Approach 710
23.8.2 Complexity of the Issues 711
23.8.3 Scientific Factors 711
23.8.4 Occupational Disease as a Process 712
23.8.5 Potential Hazards 712
23.8.6 Modes of Entry 712
23.8.7 Body Processes and Defenses 713
23.8.8 Elimination 714
23.9 Ergonomics 714
23.9.1 The Worker and Work 714
23.9.2 Adverse Effects Caused by Workplace Conditions 715
Problems/Questions 715
References 716

24 Engineering Projects Management 717

24.1 Role of Engineers 717
24.2 Steps in Project Development 717
24.2.1 Community Action 717
24.2.2 Engineering Response 718
24.3 The Engineering Report 718
24.4 Feasibility Studies 719
24.5 Alternatives 719
24.6 Plans and Specifications 720
24.7 Sources of Information 720
24.8 Standards 720
24.9 Design Specifications 721
24.10 Project Construction 721
24.10.1 Notice to Bidders 721
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.10.2 General Conditions</td>
<td>721</td>
</tr>
<tr>
<td>24.10.3 Special Provisions</td>
<td>722</td>
</tr>
<tr>
<td>24.10.4 Detailed Specifications</td>
<td>722</td>
</tr>
<tr>
<td>24.10.5 The Proposal</td>
<td>722</td>
</tr>
<tr>
<td>24.10.6 The Contract</td>
<td>722</td>
</tr>
<tr>
<td>24.11 Project Financing</td>
<td>723</td>
</tr>
<tr>
<td>24.12 Methods of Borrowing</td>
<td>725</td>
</tr>
<tr>
<td>24.12.1 General Obligation Bonds</td>
<td>725</td>
</tr>
<tr>
<td>24.12.2 Revenue Bonds</td>
<td>725</td>
</tr>
<tr>
<td>24.12.3 Special Assessment Bonds</td>
<td>725</td>
</tr>
<tr>
<td>24.13 Rate Making</td>
<td>725</td>
</tr>
<tr>
<td>24.13.1 Water Rates</td>
<td>725</td>
</tr>
<tr>
<td>24.13.2 Fire Protection</td>
<td>726</td>
</tr>
<tr>
<td>24.13.3 Peak-Flow Demands</td>
<td>726</td>
</tr>
<tr>
<td>24.13.4 Sewer Service Charges</td>
<td>726</td>
</tr>
<tr>
<td>24.14 Systems Management</td>
<td>726</td>
</tr>
<tr>
<td>Problems/Questions</td>
<td>727</td>
</tr>
<tr>
<td>References</td>
<td>727</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td>729</td>
</tr>
<tr>
<td>INDEX</td>
<td>797</td>
</tr>
</tbody>
</table>