Contents

Contributor contact details
Woodhead Publishing Series in Civil and Structural Engineering

1 Introduction to the recycling of construction and demolition waste (CDW)
 F. PACHECO-TORGAL, University of Minho, Portugal

 1.1 Introduction
 1.2 EU 70% recycling target for 2020
 1.3 Outline of the book
 1.4 References

Part I Managing construction and demolition waste

2 Improving waste management plans in construction projects
 V. W. Y. TAM, University of Western Sydney, Australia

 2.1 Introduction
 2.2 Existing waste management planning (WMP) measures and methods of control
 2.3 Assessing the effectiveness of WMP methodology
 2.4 Conclusions
 2.5 Acknowledgement
 2.6 References

3 Methods for estimating construction and demolition (C&D) waste
 C. LLATAS, University of Seville, Spain

 3.1 Introduction
 3.2 Definitions and documents

© Woodhead Publishing Limited, 2013
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Sources of construction and demolition (C&D) waste</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Composition of C&D waste</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Quantification of C&D waste studies</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Estimate procedures and case studies</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Future trends</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Sources of further information and advice</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Waste management plants and technology for recycling construction and demolition (C&D) waste: state-of-the-art and future challenges</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of waste management plants</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Environmental and health aspects</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Construction and demolition (C&D) waste management plants in the waste chain: a systems perspective</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions and future trends</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>Sources of further information and advice</td>
<td>70</td>
</tr>
<tr>
<td>4.7</td>
<td>References</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Multi-criteria decision-making methods for the optimal location of construction and demolition waste (C&DW) recycling facilities</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Decision-making tools: site selection</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Multi-Criteria Analysis (MCA): an overview</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>MCA-based methodology for site selection of construction and demolition waste (C&DW) recycling facilities</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>A case study: Cantabria, northern Spain</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>100</td>
</tr>
<tr>
<td>5.7</td>
<td>Acknowledgements</td>
<td>101</td>
</tr>
<tr>
<td>5.8</td>
<td>References</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>The economics of construction and demolition waste (C&DW) management facilities</td>
<td>108</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>108</td>
</tr>
<tr>
<td>6.2</td>
<td>Drivers and constraints for the development of the recycling sector</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>Cost factors of construction and demolition waste (C&DW) recycling</td>
<td>121</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2013
Contents

6.4 Cost factors of the end-of-waste criteria implementation 133
6.5 Future trends 135
6.6 Acknowledgement 136
6.7 References 136

Part II Processing and properties of recycled aggregates from construction and demolition waste 139

7 Conventional demolition versus deconstruction techniques in managing construction and demolition waste (CDW) 141
A. COELHO and J. DE BRITO, Technical University of Lisbon, Portugal

7.1 Introduction 141
7.2 Technological aspects of demolition 143
7.3 Technological aspects of deconstruction 146
7.4 Demolition versus deconstruction: economic analysis 150
7.5 Demolition versus deconstruction: environmental analysis 173
7.6 Conclusions 181
7.7 Future trends 182
7.8 References 183

8 Demolition techniques and production of construction and demolition waste (CDW) for recycling 186
P. KAMRATH, Paul Kamrath Ingenieurrückbau GmbH, Germany

8.1 Introduction 186
8.2 End-of-life scenarios for buildings 187
8.3 Planning demolition 188
8.4 Demolition technologies 192
8.5 Top-down and other demolition methods 199
8.6 Types and handling of demolition waste 205
8.7 Conclusions 207
8.8 References 208

9 Preparation of concrete aggregates from construction and demolition waste (CDW) 210
A. COELHO and J. DE BRITO, Technical University of Lisbon, Portugal

9.1 Introduction 210
9.2 Technological aspects of concrete recycling 212
9.3 Uses of recycled construction and demolition waste (CDW) materials 228
9.4 Economic aspects of recycled aggregate for concrete 230
9.5 Environmental aspects of recycled aggregate for concrete 235

© Woodhead Publishing Limited, 2013
9.6 Conclusions and future trends 241
9.7 References 242

10 Separation processes to improve the quality of recycled concrete aggregates (RCAs) 246
A. AKBARNEZHAD, The University of New South Wales, Australia and K. C. G. ONG, National University of Singapore, Singapore

10.1 Introduction 246
10.2 Recycled concrete aggregates (RCAs): properties and mortar content 247
10.3 Beneficiation of RCAs: innovative methods 251
10.4 Effects of RCA beneficiation on the mechanical properties of recycled aggregate concrete (RAC) 263
10.5 Economic and environmental assessment of RCA beneficiation 265
10.6 References 268

11 Quality control of recycled aggregates (RAs) from construction and demolition waste (CDW) 270
M. MARTIN-MORALES, M. ZAMORANO, I. VALVERDE-PALACIOS, G. M. CUENCA-MOYANO and Z. SANCHEZ-ROLDAN, University of Granada, Spain

11.1 Introduction 270
11.2 Composition and classification of recycled aggregates (RAs) 271
11.3 Quality criteria for the use of RAs 274
11.4 Guidelines for measuring quality parameters of RAs 286
11.5 Parameters affecting compliance with quality criteria 294
11.6 Conclusions 296
11.7 Sources of further information and advice 297
11.8 References 298

12 Properties of concrete with recycled aggregates 304
F. AGRELA, University of Cordoba, Spain and P. ALAEOS and M. S. DE JUAN, Laboratory of Materials and Structures (CEDEX), Spain

12.1 Introduction 304
12.2 Properties of fresh concrete using recycled aggregates 305
12.3 Properties of hardened concrete using recycled aggregates 310
12.4 Summary: using recycled aggregates successfully in concrete 323
12.5 References 327
13 Strength and durability of concrete using recycled aggregates (RAs)
A. E. RICHARDSON, Northumbria University, UK

13.1 Introduction: using recycled aggregates (RAs) in concrete
13.2 Factors affecting the durability of concrete
13.3 Strength and durability of concrete using RAs
13.4 Conclusions
13.5 References

Part III Applications of recycled aggregates from construction and demolition waste

14 Recycled aggregates (RAs) for roads
J. R. JIMÉNEZ, University of Córdoba, Spain

14.1 Introduction
14.2 Physico-mechanical characterisation of recycled aggregates (RAs) for roads
14.3 Chemical characterisation of RAs for road construction
14.4 RAs from construction and demolition waste (CDW) in pavement sections
14.5 Assessing the use of RAs in practice
14.6 Environmental performance
14.7 Conclusions and future trends
14.8 References

15 Recycled aggregates (RAs) for asphalt materials
B. GÓMEZ-MEJÍDE and I. PEREZ, Universidade da Coruña, Spain

15.1 Introduction
15.2 Volumetric properties
15.3 Rutting
15.4 Stiffness
15.5 Fatigue
15.6 Stripping and durability
15.7 Conclusions
15.8 Acknowledgements
15.9 References

16 Recycled asphalt (RA) for pavements
A. TÁBAKOVIC, University College Dublin, Ireland

16.1 Introduction
16.2 The recycling process for recycled asphalt (RA)
Contents

16.3 Assessment of the properties of RA 403
16.4 Designing a pavement mix containing RA 412
16.5 Testing the mechanical properties of designed mixtures 415
16.6 Future trends 418
16.7 References 419

17 The suitability of concrete using recycled aggregates (RAs) for high-performance concrete (HPC) 424
F. PACHECO-TORGAL, University of Minho, Portugal, Y. DING, Dalian University of Technology, China, S. MIRALDO, University of Aveiro, Portugal, Z. ABDOLLACHEJAD, University of Minho, Portugal and J. A. LABRINCHA, University of Aveiro & CICECO, Portugal

17.1 Introduction 424
17.2 High performance concrete (HPC) with recycled aggregates (RAs): an overview 426
17.3 Applications of HPC using RAs 430
17.4 References 434

18 Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements 439
A. ALLAHVERDI, Iran University of Science and Technology, Iran and E. NAJAFI KANI, Semnan University, Iran

18.1 Introduction 439
18.2 The development of alkali-activated or geopolymer cements 440
18.3 Mechanisms of alkali activation and properties of alkali-activated cements 442
18.4 Applications of alkali-activated or geopolymer cements 444
18.5 Precursors for alkali-activated or geopolymer cements 447
18.6 The development of alkali-activated or geopolymer cements based on construction and demolition waste 451
18.7 Conclusions 467
18.8 References 467

Part IV Environmental issues affecting recycled aggregates from construction and demolition waste 477

19 Removing gypsum from construction and demolition waste (C&DW) 479
H. ASAKURA, Nagasaki University, Japan

19.1 Introduction 479
19.2 Definition and utilization of gypsum 480
<table>
<thead>
<tr>
<th>23</th>
<th>Life-cycle assessment (LCA) of concrete with recycled aggregates (RAs)</th>
<th>569</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>569</td>
</tr>
<tr>
<td>23.2</td>
<td>Properties of concrete with recycled concrete aggregates (RCA)</td>
<td>571</td>
</tr>
<tr>
<td>23.3</td>
<td>Life-cycle assessment (LCA) of concrete: allocation issues</td>
<td>572</td>
</tr>
<tr>
<td>23.4</td>
<td>A case study: LCA of recycled aggregate concrete (RAC) production compared to natural aggregate concrete (NAC) production</td>
<td>584</td>
</tr>
<tr>
<td>23.5</td>
<td>LCA of low-grade applications of RCA</td>
<td>592</td>
</tr>
<tr>
<td>23.6</td>
<td>LCA of waste management systems</td>
<td>597</td>
</tr>
<tr>
<td>23.7</td>
<td>Conclusions and future trends</td>
<td>600</td>
</tr>
<tr>
<td>23.8</td>
<td>Acknowledgement</td>
<td>601</td>
</tr>
<tr>
<td>23.9</td>
<td>References</td>
<td>602</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>Assessing the potential environmental hazards of concrete made using recycled aggregates (RAs)</th>
<th>605</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>605</td>
</tr>
<tr>
<td>24.2</td>
<td>Methods for assessing the potential hazard of construction materials and wastes</td>
<td>606</td>
</tr>
<tr>
<td>24.3</td>
<td>Pollutant emissions from concrete materials</td>
<td>612</td>
</tr>
<tr>
<td>24.4</td>
<td>Recycled aggregates (RAs): properties and intrinsic potential hazards</td>
<td>622</td>
</tr>
<tr>
<td>24.5</td>
<td>Concrete materials containing RAs: properties and potential hazards</td>
<td>625</td>
</tr>
<tr>
<td>24.6</td>
<td>Conclusions</td>
<td>626</td>
</tr>
<tr>
<td>24.7</td>
<td>References</td>
<td>628</td>
</tr>
</tbody>
</table>

Index 631