STRUCTURAL TIMBER DESIGN
to Eurocode 5

2nd Edition

Jack Porteous BSc, MSc, DIC, PhD, CEng, MInstEC, FICE
Director
Jack Porteous Consultancy

and

Abdy Kermani BSc, MSc, PhD, CEng, FIInstEC, FIWSc
Professor and Director of Centre for Timber Engineering
Edinburgh Napier University
Contents

Preface to the Second Edition xii

1 Timber as a Structural Material 1
1.1 Introduction 1
1.2 The structure of timber 2
1.3 Types of timber 3
 1.3.1 Softwoods 3
 1.3.2 Hardwoods 4
1.4 Natural characteristics of timber 4
 1.4.1 Knots 4
 1.4.2 Slope of grain 5
 1.4.3 Reaction wood 5
 1.4.4 Juvenile wood 6
 1.4.5 Density and annual ring widths 6
 1.4.6 Conversion of timber 7
 1.4.7 Seasoning 11
 1.4.8 Seasoning defects 11
 1.4.9 Cracks and fissures 11
 1.4.10 Fungal decay 11
1.5 Strength grading of timber 11
 1.5.1 Visual grading 12
 1.5.2 Machine grading 12
 1.5.3 Strength classes 15
1.6 Section sizes 16
1.7 Engineered wood products (EWPs) 16
 1.7.1 Glued-laminated timber (glulam) 18
 1.7.2 Cross-laminated timber (CLT or X-Lam) 20
 1.7.3 Plywood 21
 1.7.4 Laminated Veneer Lumber (LVL) 25
 1.7.5 Laminated Strand Lumber (LSL), TimberStrand® 25
 1.7.6 Parallel Strand Lumber (PSL), Parallam® 27
 1.7.7 Oriented Strand Board (OSB) 27
 1.7.8 Particleboards and fibre composites 39
 1.7.9 Thin webbed joists (I-joists) 39
 1.7.10 Thin webbed beams (box beams) 41
 1.7.11 Structural Insulated Panels (SIPs) 42
1.8 Suspended timber flooring 44
1.9 Adhesive bonding of timber 46
3.3 What does Mathcad do?
 3.3.1 A simple calculation
 3.3.2 Definitions and variables
 3.3.3 Entering text
 3.3.4 Working with units
 3.3.5 Commonly used Mathcad functions

3.4 Summary
3.5 References

4 Design of Members Subjected to Flexure
 4.1 Introduction
 4.2 Design considerations
 4.3 Design value of the effect of actions
 4.4 Member span
 4.5 Design for Ultimate Limit States (ULS)
 4.5.1 Bending
 4.5.2 Shear
 4.5.3 Bearing (compression perpendicular to the grain)
 4.5.4 Torsion
 4.5.5 Combined shear and torsion
 4.6 Design for Serviceability Limit States (SLS)
 4.6.1 Deformation
 4.6.2 Vibration
 4.7 References
 4.8 Examples

5 Design of Members and Walls Subjected to Axial or Combined Axial
 and Flexural Actions
 5.1 Introduction
 5.2 Design considerations
 5.3 Design of members subjected to axial actions
 5.3.1 Members subjected to axial compression
 5.3.2 Members subjected to compression at an angle to the grain
 5.3.3 Members subjected to axial tension
 5.4 Members subjected to combined bending and axial loading
 5.4.1 Where lateral torsional instability due to bending about the
 major axis will not occur
 5.4.2 Lateral torsional instability under the effect of bending about
 the major axis
 5.4.3 Members subjected to combined bending and axial tension
 5.5 Design of stud walls
 5.5.1 Design of load-bearing walls
 5.5.2 Out of plane deflection of load-bearing stud walls (and columns)
 5.6 References
 5.7 Examples

6 Design of Glued-Laminated Members
 6.1 Introduction
 6.2 Design considerations
Contents

6.3 General 218
6.3.1 Horizontal and vertical glued-laminated timber 218
6.3.2 Design methodology 219
6.4 Design of glued-laminated members with tapered, curved or pitched curved profiles (also applicable to LVL members) 223
6.4.1 Design of single tapered beams 223
6.4.2 Design of double tapered beams, curved and pitched cambered beams 228
6.4.3 Design of double tapered beams, curved and pitched cambered beams subjected to combined shear and tension perpendicular to the grain 234
6.5 Finger joints 234
Annex 6.1 Deflection formulae for simply supported tapered and double tapered beams subjected to a point load at mid-span or to a uniformly distributed load 234
Annex 6.2 Graphical representation of factors k_r and k_p used in the derivation of the bending and radial stresses in the apex zone of double tapered curved and pitched cambered beams 237
6.6 References 238
6.7 Examples 239

7 Design of Composite Timber and Wood-Based Sections 258
7.1 Introduction 258
7.2 Design considerations 259
7.3 Design of glued composite sections 260
7.3.1 Glued thin webbed beams 260
7.3.2 Glued thin flanged beams (stressed skin panels) 274
7.4 References 283
7.5 Examples 283

8 Design of Built-Up Columns 311
8.1 Introduction 311
8.2 Design considerations 311
8.3 General 312
8.4 Bending stiffness of built-up columns 313
8.4.1 The effective bending stiffness of built-up sections about the strong (y-y) axis 314
8.4.2 The effective bending stiffness of built-up sections about the z-z axis 316
8.4.3 Design procedure 318
8.4.4 Built-up sections - spaced columns 323
8.4.5 Built-up sections - latticed columns 327
8.5 Combined axial loading and moment 331
8.6 Effect of creep at the ULS 332
8.7 References 333
8.8 Examples 333

9 Design of Stability Bracing, Floor and Wall Diaphragms 357
9.1 Introduction 357
9.2 Design considerations 358
Contents

9.3 Lateral bracing 358
 9.3.1 General 358
 9.3.2 Bracing of single members (subjected to direct compression) by local support 360
 9.3.3 Bracing of single members (subjected to bending) by local support 363
 9.3.4 Bracing for beam, truss or column systems 364

9.4 Floor and roof diaphragms 368
 9.4.1 Limitations on the applicability of the method 368
 9.4.2 Simplified design procedure 368

9.5 The in-plane racking resistance of timber walls under horizontal and vertical loading 370

9.6 References 372

9.7 Examples 373

10 Design of Metal Dowel-type Connections 383
 10.1 Introduction 383
 10.1.1 Metal dowel-type fasteners 383
 10.2 Design considerations 387
 10.3 Failure theory and strength equations for laterally loaded connections formed using metal dowel fasteners 389
 10.3.1 Dowel diameter 395
 10.3.2 Characteristic fastener yield moment \(M_{y,k} \) 397
 10.3.3 Characteristic embedment strength \(f_{e,b} \) 398
 10.3.4 Member thickness, \(t_1 \) and \(t_2 \) 402
 10.3.5 Friction effects and axial withdrawal of the fastener 403
 10.3.6 Brittle failure 406
 10.4 Multiple dowel fasteners loaded laterally 412
 10.4.1 The effective number of fasteners 413
 10.4.2 Alternating forces in connections 416
 10.5 Design strength of a laterally loaded metal dowel connection 416
 10.5.1 Loaded parallel to the grain 416
 10.5.2 Loaded perpendicular to the grain 417
 10.6 Examples of the design of connections using metal dowel-type fasteners 418
 10.7 Multiple shear plane connections 418
 10.8 Axial loading of metal dowel connection systems 420
 10.8.1 Axially loaded nails 420
 10.8.2 Axially loaded bolts 423
 10.8.3 Axially loaded dowels 423
 10.8.4 Axially loaded screws 423
 10.9 Combined laterally and axially loaded metal dowel connections 427
 10.10 Lateral stiffness of metal dowel connections at the SLS and ULS 428
 10.11 Frame analysis incorporating the effect of lateral movement in metal dowel fastener connections 435
 10.12 References 436
 10.13 Examples 437

11 Design of Joints with Connectors 473
 11.1 Introduction 473
 11.2 Design considerations 473
11.3 Toothed-plate connectors

- **11.3.1 Strength behaviour**

11.4 Ring and shear-plate connectors

- **11.4.1 Strength behaviour**

11.5 Multiple shear plane connections

11.6 Brittle failure due to connection forces at an angle to the grain

11.7 Alternating forces in connections

11.8 Design strength of a laterally loaded connection

- **11.8.1 Loaded parallel to the grain**
- **11.8.2 Loaded perpendicular to the grain**
- **11.8.3 Loaded at an angle to the grain**

11.9 Stiffness behaviour of toothed-plate, ring and shear-plate connectors

11.10 Frame analysis incorporating the effect of lateral movement in connections formed using toothed-plate, split-ring or shear-plate connectors

11.11 References

11.12 Examples

12 Moment Capacity of Connections Formed with Metal Dowel Fasteners or Connectors

12.1 Introduction

12.2 Design considerations

12.3 The effective number of fasteners in a row in a moment connection

12.4 Brittle failure

12.5 Moment behaviour in timber connections: Rigid model behaviour

- **12.5.1 Assumptions in the connection design procedure**
- **12.5.2 Connection design procedure**
- **12.5.3 Shear strength and force component checks on connections subjected to a moment and lateral forces**

12.6 The analysis of structures with semi-rigid connections

- **12.6.1 The stiffness of semi-rigid moment connections**
- **12.6.2 The analysis of beams with semi-rigid end connections**

12.7 References

12.8 Examples

13 Racking Design of Multi-storey Platform Framed Wall Construction

13.1 Introduction

13.2 Conceptual design

13.3 Design requirements of racking walls

13.4 Loading

13.5 Basis of Method A

- **13.5.1 General requirements**
- **13.5.2 Theoretical basis of the method**
- **13.5.3 The EC5 procedure**

13.6 Basis of the racking method in PD6693-1

- **13.6.1 General requirements**
- **13.6.2 Theoretical basis of the method**
- **13.6.3 The PD6693-1 procedure**