CONTENTS

Preface xvii

Chapter 1 Introduction to Engineering Psychology and Human Performance 1
 1. Definitions 1
 1.1 Engineering Psychology 1
 1.2 Human Performance 2
 2. Research Methods 3
 3. A Model of Human Information Processing 3
 4. Pedagogy of the Book 6
Key Terms 7

Chapter 2 Signal Detection and Absolute Judgment 8
 1. Overview 8
 2. Signal Detection Theory 8
 2.1 The Signal Detection Paradigm 8
 2.2 Setting the Response Criterion: Optimality in SDT 12
 2.3 Sensitivity 15
 3. The ROC Curve 16
 3.1 Theoretical Representation 16
 3.2 Empirical Data 18
 4. Fuzzy Signal Detection Theory 19
 5. Applications of Signal Detection Theory 20
 5.1 Medical Diagnosis 21
 5.2 Recognition Memory and Eyewitness Testimony 22
 5.3 Alarm and Alert Systems 23
 6. Vigilance 25
 6.1 Measuring Vigilance Performance 26
 6.2 Theories of Vigilance 27
 6.3 Techniques to Combat the Loss of Vigilance 28
 6.4 Vigilance: Inside and Outside the Laboratory 31
 7. Absolute Judgment 32
 7.1 Quantifying Information 32
 7.2 Single Dimensions 32
 7.3 Multidimensional Judgment 34
 8. Transition 40
Supplement: Information Theory 41
Chapter 3
Attention in Perception and Display Space 49
1. Overview 49
2. Selective Visual Attention 50
 2.1 Supervisory Control: The SEEV model 50
 2.2 Noticing and Attentional Capture 53
 2.3 Visual Search 56
 2.4 Clutter 61
 2.5 Directing and Guiding Attention 62
3. Parallel Processing and Divided Attention 64
 3.1 Preattentive Processing and Perceptual Organization 64
 3.2 Spatial Proximity 65
 3.3 Object-Based Proximity 68
 3.4 Applications of Object-Based Attention 68
 3.5 The Proximity Compatibility Principle (PCP) 71
4. Attention in the Auditory Modality 77
 4.1 Auditory Divided Attention 78
 4.2 Focusing Auditory Attention 79
 4.3 Cross-Modality Attention 80
5. Transition 82

Key Terms 83

Chapter 4
Spatial Displays 84
1. Graph Perception 84
 1.1 Graph Guidelines 85
 1.2 Task Dependency and the Proximity Compatibility Principle 86
 1.3 Minimize the Number of Mental Operations: Search, Encode, and Compare 87
 1.4 Biases in Graph Reading 88
 1.5 The Data-ink Ratio 91
 1.6 Multiple Graphs 92
2. Dials, Meters, and Indicators: Display Compatibility 94
 2.1 The Static Component: Pictorial Realism 95
Chapter 5

Spatial Cognition, Navigation, and Manual Control 123

1. Frames of Reference 124
 1.1 Cognitive Representation of Space 124
 1.2 Frame of Reference (FOR) Transformations in 2D mental Rotation 125
 1.3 3D Mental Rotation: The General FORT Model 127
 1.4 2D or 3D 129
 1.5 Solutions to FOR Problems 131

2. Applications to Map Design 132
 2.1 Design of 2D Maps 132
 2.2 Design of 3D Maps 133
 2.3 Map Scale 133
 2.4 The Role of Clutter in Map Search 133

3. Environmental Design 135

4. Information Visualization 137
 4.1 Tasks in Visualization 137
 4.2 Principles of Visualization 138

5. Visual Momentum 144

6. Tracking, Travel, and Continuous Manual Control 145
 6.1 Tracking to a Fixed Target 146
 6.2 Tracking a Moving Target 146
 6.3 What Makes Tracking Difficult 147
 6.4 Multi-Axis Tracking and Control 149
Chapter 6

Language and Communication 160

1. Overview 160
2. The Perception of Print 160
 2.1 Stages in Word Perception 160
 2.2 Top-Down Processing: Context and Redundancy 162
 2.3 Reading: From Words to Sentences 164
3. Applications of Unitization and Top-Down Processing 165
 3.1 Unitization 166
 3.2 Context-Data Tradeoffs 168
 3.3 Code Design: Economy Versus Security 169
4. Recognition of Objects 170
 4.1 Top-Down and Bottom-Up Processing 170
 4.2 Pictures and Icons 172
 4.3 Sounds and Earcons 174
5. Comprehension 175
 5.1 Instructions 175
 5.2 Context 178
 5.3 Command Versus Status 178
 5.4 Linguistic Factors 179
 5.5 Working Memory Load 180
6. Multimedia Instructions 180
 6.1 The Optimum Medium 180
 6.2 Redundancy and Complementarity 181
 6.3 Realism of Pictorial Material 184
7. Product Warnings 184
8. Speech Perception 186
 8.1 Representation of Speech 187
 8.2 Units of Speech Perception 188
 8.3 Top-down processing of Speech 189
 8.4 Applications of Voice Recognition Research 190
 8.5 Communications 192
 8.6 Crew Resource Management and Team Situation Awareness 194
Chapter 7

Memory and Training 197

1. Overview 197

2. Working Memory 198
 2.1 Working Memory Interference 200
 2.2 Working Memory, the Central Executive, and Executive Control 201
 2.3 Matching Display with Working Memory Code 201
 2.4 Limitations of Working Memory: Duration and Capacity 203

3. Interference and Confusion 205

4. Expertise and Memory 208
 4.1 Expertise 208
 4.2 Expertise and Chunking 209
 4.3 Skilled Memory and Long Term Working Memory 209

5. Everyday Memory 210
 5.1 Prospective Memory 211
 5.2 Transactive Memory 213

6. Situation Awareness 214
 6.1 Working Memory and Expertise in Situation Awareness 216
 6.2 Levels of SA and Anticipation 217
 6.3 Measuring SA and the Role of Awareness 218

7. Planning and Problem Solving 220

8. Training 223
 8.1 Transfer of Training 223
 8.2 Training Techniques and Strategies 228

9. Long Term Memory: Representation, Organization, and Retrieval 234
 9.1 Knowledge Representation 234
 9.2 Memory Retrieval and Forgetting 239
 9.3 Skill Retention 242

10. Transition 243
 Key Terms 244

Chapter 8

Decision Making 245

1. Introduction 245

2. Classes and Features of DM 246

3. An Information Processing Model of Decision Making 247

5. Diagnosis and Situation Assessment in Decision Making 250
 5.1 Estimating Cues: Perception 250
 5.2 Evidence Accumulation, Selective Attention: Cue Seeking and
 Hypothesis Formation 253
 5.3 Expectations in Diagnosis: The Role of Long-Term Memory 258
 5.4 Belief Changes Over Time 260
 5.5 Implications of Biases and Heuristics in Diagnoses 263

6. Choice of Action 264
 6.1 Certain Choice 254
 6.2 Choice Under Uncertainty: The Expected Value Model 266
 6.3 Heuristics and Biases in Uncertain Choice 268
 6.4 The Decision to Behave Safely 273

7. Effort and Meta Cognition 274
 7.1 Effort 274
 7.2 Meta-Cognition and (Over) Confidence 276

8. Experience and Expertise in Decision Making 278

9. Improving Decision Making 281
 9.1 Training Debiasing 281
 9.2 Proceduralization 282
 9.3 Displays 282
 9.4 Automation and Decision Support Tools 283

10. Conclusion and Transition 283

Key Terms 283

Chapter 9

Selection of Action 284
1. Variables Influencing Simple and Choice RT 285
 1.1 Stimulus Modality 285
 1.2 Stimulus Intensity 285
 1.3 Temporal Uncertainty 286
 1.4 Expectancy 286

2. Variables Influencing Choice Reaction Time 287
 2.1 The Information Theory Model: The Hick-Hyman Law 287
 2.2 The Speed-Accuracy Trade-off 289
 2.3 Stimulus Discriminability 292
 2.4 The Repetition Effect 292
 2.5 Response Factors 292
 2.6 Practice 293
 2.7 Executive Control 293
 2.8 S-R Compatibility 293
Chapter 10

3. Stages in Reaction Time 303
4. Serial Responses 304
 4.1 The Psychological Refractory Period 304
 4.2 Decision Complexity: The Decision Complexity Advantage 306
 4.3 Pacing 308
 4.4 Response Factors 309
 4.5 Preview and Transcription 310
5. Errors 310
 5.1 Categories of Human Error: An Information-Processing Approach 311
 5.2 Human Reliability Analysis 315
 5.3 Errors in an Organizational Context 318
 5.4 Error Remedies 318
6. Transition 320
Key Terms 320

Chapter 10 Multitasking Corrected 321
1. Overview 321
2. Effort and Resource Demand 322
3. Multiplicity 325
 3.1 Stages 326
 3.2 Processing Codes 327
 3.3 Perceptual Modalities 328
 3.4 Visual Channels 329
 3.5 A Computational Model 329
4. Executive Control, Switching, and Resource Management 330
 4.1 Task Switching 332
 4.2 Interruption Management 333
 4.3 From Interruption Management to Task Management 336
5. Distracted Driving 338
 5.1 Mechanisms of Interference 338
 5.2 Cell Phone Interference 339
6. Task Similarity, Confusion, and Crosstalk 341
7. Individual Differences in Time Sharing 341
 7.1 Expertise and Attention 342
 7.2 Training Expertise in Time-Sharing Skills 343
 7.3 Aging and Attention Skills 344
8. Conclusion and Transition 344
Key Terms 345
Chapter 11
Mental Workload, Stress, and Individual Differences: Cognitive and Neuroergonomic Perspectives 346
1. Introduction 346
2. The Neuroergonomic Approach 347
3. Mental Workload 347
 3.1 Workload Overload 348
 3.2 Reserve Capacity Region 350
 3.3 Measures of Mental Workload and Reserve Capacity 351
 3.4 Neuroergonomics of Workload 353
 3.5 Relationship Between Workload Measures 358
 3.6 Consequences of Workload 359
4. Stress, Physiological Arousal, and Human Performance 360
 4.1 Arousal Theory 361
 4.2 The Yerkes Dodson Law 362
 4.3 Transactional and Cognitive Appraisal Theories of Stress 363
 4.4 Stress Effects on Performance 363
 4.5 Stress Component Effects 364
 4.6 Stress Remediation 369
5. Individual Differences 370
 5.1 Ability Differences in Multitasking 371
 5.2 Differences in Working Memory 372
 5.3 Molecular Genetics and Individual Differences in Cognition 373
 5.4 Brain Computer Interfaces for Healthy and Disabled Individuals 374
6. Conclusions and Transition 376
Key Terms 376

Chapter 12
Automation and Human Performance 377
1. Introduction 377
2. Examples and Purposes of Automation 378
 2.1 Tasks That Humans Cannot Perform 379
 2.2 Human Performance Limitations 379
 2.3 Augmenting or Assisting Human Performance 379
 2.4 Economics 380
 2.5 Productivity 380
3. Automated-Related Incidents and Accidents 380
4. Levels and Stages of Automation 381
 4.1 Information Acquisition 384
4.2 Information Analysis 384
4.3 Decision Making and Action Selection 385
4.4 Action Implementation 385
5. Automation Complexity 386
6. Feedback on Automation States and Behaviors 387
7. Trust in and Dependence on Automation 388
 7.1 Over-trust 390
 7.2 Mistrust and Alarm False Alarms 394
8. Adaptive Automation 395
 8.1 What to Adapt 396
 8.2 How to Infer 397
 8.3 Who Decides? 398
9. Designing for Effective Human-Automation Interaction 400
 9.1 Feedback 400
 9.2 Appropriate Levels and Stages of Automation 400
 9.3 Designing for Human-Automation "Etiquette" 402
 9.4 Calibrating Operator Trust: Display Design and Training 403
10. Conclusions 404
Key Terms 404

Epilogue 405