First Edition

Handbook of Tunnel Engineering
Volume I: Structures and Methods

Bernhard Maidl
Markus Thewes
Ulrich Maidl
Table of Contents

Volume I: Structures and Methods

The authors .. VII
Foreword to the English edition IX
Foreword to the 3rd German edition X
Foreword to the 2nd German edition XI
Foreword to the 1st German edition XII

1 Introduction .. 1
 1.1 General .. 1
 1.2 Historical development 1
 1.3 Terms and descriptions 4

2 Support methods and materials 9
 2.1 General .. 9
 2.2 Action of the support materials 10
 2.2.1 Stiffness and deformability 10
 2.2.2 Bond .. 11
 2.2.3 Time of installation 11
 2.3 Timbering ... 12
 2.3.1 General .. 12
 2.3.2 Frame set timbering 13
 2.3.3 Trussed timbering 14
 2.3.4 Shoring and lagging 14
 2.4 Steel ribs .. 14
 2.4.1 General .. 14
 2.4.2 Profile forms 15
 2.4.3 Examples of typical arch forms for large and small tunnels 15
 2.4.4 Installation 16
 2.5 Lattice beam elements 19
 2.6 Advance support measures 21
 2.6.1 Steel lagging sheets and plates 21
 2.6.2 Spiles .. 23
 2.6.3 Injection tubes 25
 2.6.4 Pipe screens, grout screens, jet grout screens 25
 2.6.5 Ground freezing 28
 2.7 Rock bolts .. 29
 2.7.1 General .. 29
 2.7.2 Mode of action 29
 2.7.3 Anchor length and spacing 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.4</td>
<td>Load-bearing behaviour.</td>
<td>33</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Anchor types</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>Concrete in tunnelling</td>
<td>45</td>
</tr>
<tr>
<td>2.8.1</td>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Construction variants</td>
<td>45</td>
</tr>
<tr>
<td>2.8.2.1</td>
<td>Two-layer construction</td>
<td>46</td>
</tr>
<tr>
<td>2.8.2.2</td>
<td>Single-layer construction</td>
<td>46</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Shotcrete</td>
<td>48</td>
</tr>
<tr>
<td>2.8.3.1</td>
<td>General</td>
<td>48</td>
</tr>
<tr>
<td>2.8.3.2</td>
<td>Process technology, equipment and handling</td>
<td>49</td>
</tr>
<tr>
<td>2.8.3.3</td>
<td>Mixing and recipes</td>
<td>60</td>
</tr>
<tr>
<td>2.8.3.4</td>
<td>Influence of materials technology and process technology</td>
<td>72</td>
</tr>
<tr>
<td>2.8.3.5</td>
<td>Quality criteria, material behaviour and calculation methods, quality control</td>
<td>87</td>
</tr>
<tr>
<td>2.8.3.6</td>
<td>Mechanisation of shotcrete technology</td>
<td>91</td>
</tr>
<tr>
<td>2.8.3.7</td>
<td>Steel fibre concrete</td>
<td>100</td>
</tr>
<tr>
<td>2.8.3.8</td>
<td>Working safety</td>
<td>106</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Cast concrete</td>
<td>111</td>
</tr>
<tr>
<td>2.8.4.1</td>
<td>Formwork</td>
<td>111</td>
</tr>
<tr>
<td>2.8.4.2</td>
<td>Concreting</td>
<td>114</td>
</tr>
<tr>
<td>2.8.4.3</td>
<td>Reinforced or unreinforced concrete lining</td>
<td>115</td>
</tr>
<tr>
<td>2.8.4.4</td>
<td>Factors affecting crack formation</td>
<td>118</td>
</tr>
<tr>
<td>2.8.4.5</td>
<td>Disadvantages of nominal reinforcement</td>
<td>118</td>
</tr>
<tr>
<td>2.8.4.6</td>
<td>Stripping times</td>
<td>119</td>
</tr>
<tr>
<td>2.8.4.7</td>
<td>Filling of the crown gap</td>
<td>119</td>
</tr>
<tr>
<td>2.8.4.8</td>
<td>Joint details</td>
<td>120</td>
</tr>
<tr>
<td>2.8.4.9</td>
<td>Single-pass process, extruded concrete</td>
<td>120</td>
</tr>
<tr>
<td>2.8.4.10</td>
<td>After-treatment</td>
<td>123</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Precast elements, cast segments</td>
<td>124</td>
</tr>
<tr>
<td>2.8.5.1</td>
<td>Steel segments</td>
<td>124</td>
</tr>
<tr>
<td>2.8.5.2</td>
<td>Cast steel segments</td>
<td>125</td>
</tr>
<tr>
<td>2.8.5.3</td>
<td>Cast iron segments</td>
<td>126</td>
</tr>
<tr>
<td>2.8.5.4</td>
<td>Reinforced concrete segments</td>
<td>127</td>
</tr>
<tr>
<td>2.8.5.5</td>
<td>Geometrical shapes and arrangement</td>
<td>130</td>
</tr>
<tr>
<td>2.8.5.6</td>
<td>Details of radial joints</td>
<td>131</td>
</tr>
<tr>
<td>2.8.5.7</td>
<td>Circumferential joint details</td>
<td>131</td>
</tr>
<tr>
<td>2.8.5.8</td>
<td>Fixing and sealing systems</td>
<td>132</td>
</tr>
<tr>
<td>2.8.5.9</td>
<td>Segment gaskets</td>
<td>133</td>
</tr>
<tr>
<td>2.8.5.10</td>
<td>Production of reinforced concrete segments</td>
<td>134</td>
</tr>
<tr>
<td>2.8.5.11</td>
<td>Installation of segment lining</td>
<td>135</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Linings for sewer tunnels</td>
<td>136</td>
</tr>
<tr>
<td>2.8.7</td>
<td>Yielding elements</td>
<td>142</td>
</tr>
</tbody>
</table>

3 The classic methods and their further developments | 145 |
3.1 General | 145 |
3.2 Full-face excavation | 147 |
3.3 Partial-face excavation .. 148
3.3.1 Bench excavation ... 148
3.3.2 The Belgian or underpinning tunnelling method 148
3.3.3 The German or remaining core tunnelling method 151
3.3.4 The Austrian or upraise tunnelling method 154
3.3.5 The New Austrian Tunnelling Method 155
3.3.6 The English tunnelling method 161
3.3.7 The Italian or packing tunnelling method 161

3.4 Classic shield drives .. 163
3.5 The classic tunnelling machines 164

4 Shotcrete tunnelling ... 167
4.1 General ... 167
4.2 Top heading process .. 168
4.2.1 Shotcrete tunnelling method 168
4.2.2 Underpinning method ... 168
4.2.3 Crown pilot heading with crown beam 170
4.2.4 Shotcrete tunnelling with longitudinal slots 173

4.3 Core tunnelling method with side headings 175
4.4 Special processes using shotcrete 176
4.4.1 Compressed air .. 176
4.4.2 Ground freezing, grouting 176

4.5 Shotcrete in mining .. 178
4.5.1 Tunnel support ... 178
4.5.2 Shaft insets ... 179

4.6 Outlook for further development 182
4.7 The new Italian tunnelling method (ADECCO-RS) 182
4.7.1 Theoretical model ... 183
4.7.2 Procedure through the example of the new line from Bologna - Florence .. 184

5 Drill and blast tunnelling .. 189
5.1 Historical development .. 189
5.2 Drilling ... 191
5.2.1 General .. 191
5.2.2 Drills ... 192
5.2.3 Drill bits .. 200
5.2.4 Wear ... 206
5.2.5 Performance ... 207
5.2.6 Costs .. 210

5.3 Blasting ... 211
5.3.1 General .. 211
5.3.2 Explosives in tunnelling .. 213
5.3.3 Detonators and detonation systems in tunnelling 215
5.3.4 Transport, storage and handling of explosives 221
5.3.5 Charge determination ... 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.6</td>
<td>The drilling and firing pattern</td>
<td>232</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Charge loading</td>
<td>235</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Time calculation</td>
<td>239</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Blasting technology aspects</td>
<td>241</td>
</tr>
<tr>
<td>5.4</td>
<td>Mucking</td>
<td>243</td>
</tr>
<tr>
<td>5.4.1</td>
<td>General</td>
<td>243</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Loading machines</td>
<td>244</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Muck conveyance</td>
<td>251</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Output of transport vehicles</td>
<td>260</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Examples of transport chains</td>
<td>260</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Further developments</td>
<td>265</td>
</tr>
<tr>
<td>5.5</td>
<td>Combination of drill and blast with mechanised tunnelling processes</td>
<td>265</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Combinations with roadheaders</td>
<td>265</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Combination with full-face machines</td>
<td>266</td>
</tr>
<tr>
<td>5.6</td>
<td>Effects of blasting on the surroundings</td>
<td>267</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Vibration</td>
<td>267</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Composition and effects of the blasting gas emissions</td>
<td>275</td>
</tr>
<tr>
<td>5.7</td>
<td>Mechanisation and Automation</td>
<td>278</td>
</tr>
<tr>
<td>5.7.1</td>
<td>General</td>
<td>278</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Emphasis of mechanisation</td>
<td>279</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Computer-assisted drill jumbos</td>
<td>280</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Mucking and tunnel logistics</td>
<td>282</td>
</tr>
<tr>
<td>6</td>
<td>Mechanised tunnelling</td>
<td>285</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>285</td>
</tr>
<tr>
<td>6.2</td>
<td>Categories of tunnelling machines</td>
<td>285</td>
</tr>
<tr>
<td>6.3</td>
<td>Shield machines</td>
<td>286</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Categories of shield machines</td>
<td>286</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Basic principle, definition</td>
<td>287</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Face without support</td>
<td>292</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Face with mechanical support</td>
<td>292</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Face under compressed air</td>
<td>293</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Face with slurry support</td>
<td>294</td>
</tr>
<tr>
<td>6.3.6.1</td>
<td>Functional principle</td>
<td>295</td>
</tr>
<tr>
<td>6.3.6.2</td>
<td>Slurry shield</td>
<td>295</td>
</tr>
<tr>
<td>6.3.6.3</td>
<td>Thixshield</td>
<td>297</td>
</tr>
<tr>
<td>6.3.6.4</td>
<td>Hydroshield</td>
<td>297</td>
</tr>
<tr>
<td>6.3.6.5</td>
<td>Mixshield as a Hydroshield version</td>
<td>299</td>
</tr>
<tr>
<td>6.3.6.6</td>
<td>Hydrojetshield</td>
<td>300</td>
</tr>
<tr>
<td>6.3.6.7</td>
<td>Hydraulic soil transport</td>
<td>300</td>
</tr>
<tr>
<td>6.3.6.8</td>
<td>Soil separation in shield operation with hydraulic transport</td>
<td>302</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Face with earth pressure support</td>
<td>306</td>
</tr>
<tr>
<td>6.3.7.1</td>
<td>Functional principle</td>
<td>306</td>
</tr>
<tr>
<td>6.3.7.2</td>
<td>Scope of application and soil conditioning process</td>
<td>307</td>
</tr>
<tr>
<td>6.3.7.3</td>
<td>Use of foam with earth pressure shields</td>
<td>310</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.3.8 Blade tunnelling and blade shields</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>6.3.9 The most important verification calculations</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>6.3.9.1 Calculation of face stability with slurry and earth pressure support</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>6.3.9.2 Calculation of safety against breakup and blowout</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>6.3.9.3 Calculation of thrust force</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>6.3.9.4 Determination of the air demand for compressed air support</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>6.4 Tunnel boring machines in hard rock</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>6.4.1 Categorisation of machines for use in hard rock</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>6.4.2 Basic principles</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>6.4.3 Boring system</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>6.4.4 Thrust and bracing system</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>6.4.5 Support system</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>6.4.6 Ventilation</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>6.4.7 The use of slurry and earth pressure shields in hard rock</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>6.5 Special processes: combinations of TBM drives with shotcrete tunnelling</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Areas of application</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>6.5.2 Construction possibilities</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>6.5.3 Example</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>6.6 Roadheaders (TSM) and tunnel excavators</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>6.6.1 Basic principle of a roadheader</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>6.6.2 Rock excavation by a roadheader</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>6.6.3 Ventilation and dust control with a roadheader</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>6.6.4 Profile and directional control of roadheaders</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>6.6.5 Construction sequence using a roadheader</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>6.6.6 Additional equipment and variations of roadheaders</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>6.6.7 Criteria for the selection of a roadheader</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>6.6.8 Comparison of partial face and full face machines</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>6.6.9 Combination of full face and partial face machines</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>6.6.10 Contour cutting process</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>6.6.11 Tunnel excavators</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>6.7 Checking the tunnelling machine for suitability and acceptance based on a risk analysis</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>6.7.1 Strategy to contain risk</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>6.7.2 Basic design</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>6.7.3 Analysis of obstructions</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>6.7.4 Machine specification</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>6.7.5 Acceptance of the TBM</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>6.7.6 Shield handbook</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>6.7.7 Data checks, functional tests</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>6.7.8 Implementation of the strategy through the example of the Elbe Tunnel and the Lefortovo Tunnel</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>6.7.9 Recommendations for the future</td>
<td>378</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

7 The driving of small cross-sections
- General: 379
- Manned processes:
 - General: 380
 - Pipe jacking: 380
- Unmanned processes:
 - General: 385
 - Non-steerable processes, or with limited control of direction: 386
 - Guided processes: 395
- Shafts and jacking stations:
 - Thrust shaft: 400
 - Reception shaft: 401
 - Main jacking station: 401
 - Intermediate jacking stations: 401
- Support, product pipe:
 - Loading during pipe jacking: 402
 - Loading in operation: 403
 - Insertion of the product pipe: 407

8 Ventilation during the construction phase
- General: 409
- Ventilation systems:
 - Natural ventilation: 411
 - Positive pressure ventilation: 411
 - Extraction ventilation: 412
 - Reversible ventilation: 412
 - Combined ventilation: 413
 - Recirculation systems: 413
- Materials:
 - Fans: 414
 - Air ducts: 415
 - Dedusters: 416
- Design and cost: 417
- Special ventilation systems:
 - Ventilation for TBM drives: 423
 - Ventilation of roadheader drives: 425
 - Automatic ventilation: 425

Bibliography
- 427

Index
- 443
Table of Contents

Volume II: Basics and Additional Services and Methods

1 General principles for the design of the cross-section
 1.1 General
 1.2 Dependence on intended use
 1.2.1 Road tunnels
 1.2.2 Constructional measures for road safety in tunnels
 1.2.3 Rail tunnels
 1.2.4 Construction of rail tunnels
 1.2.5 Underground railway and underground tram tunnels
 1.2.6 Innovative transport systems
 1.2.7 Monorail with magnetic levitation, Transrapid, Metrorapid
 1.2.8 Other underground works
 1.3 The influence of the rock mass
 1.4 Dependency on construction process

2 Engineering geology aspects for design and classification
 2.1 General
 2.2 Origin, properties and categorisation of rocks
 2.2.1 General basics
 2.2.2 Categorisation of rocks
 2.2.3 Categorisation of soils
 2.3 Engineering geology and rock mechanics investigations
 2.3.1 Engineering geology investigations
 2.3.2 Rock mechanics investigations
 2.4 The ground and its classification
 2.4.1 Ground
 2.4.2 Classification of the rock mass
 2.4.2.1 General
 2.4.2.2 Basic system of classification
 2.4.2.3 Q System (Quality-System)
 2.4.2.4 RMR System (Rock Mass Rating-System)
 2.4.2.5 Relationship between Q and RMR systems
 2.4.3 Standards, guidelines and recommendations
 2.4.3.1 Classification in Germany
 2.4.3.2 Classification in Switzerland ("classification" according to SIA standard)
 2.4.3.3 Classification in Austria
 2.4.4 Example of a project-related classification according to DIN 18312 for the shotcrete process
 2.4.4.1 Procedure at the Oerlinghausen Tunnel
 2.4.4.2 Description of the tunnelling classes for the Oerlinghausen Tunnel
2.5 Special features for tunnelling machines
 2.5.1 General
 2.5.2 Influences on the boring process
 2.5.3 Influences on the machine bracing
 2.5.4 Influences on the temporary support
 2.5.5 Classification for excavation and support
 2.5.5.1 General and objective for mechanised tunnelling
 2.5.5.2 Classification systems and investigation of suitability for tunnel boring machines
 2.5.6 Standards, guidelines and recommendations
 2.5.6.1 Classification in Germany
 2.5.6.2 Classification in Switzerland
 2.5.6.3 Classification in Austria
 2.5.7 New classification proposal

3 Structural design verifications, structural analysis of tunnels
 3.1 General
 3.2 Ground pressure theories
 3.2.1 Historical development
 3.2.2 Primary and secondary stress states in the rock mass
 3.3 General steps of model formation
 3.4 Analytical processes and their modelling
 3.4.1 Modelling of shallow tunnels in loose ground
 3.4.2 Modelling deep tunnels in loose ground
 3.4.3 Modelling tunnels in solid rock
 3.4.4 Bedded beam models
 3.5 Numerical methods
 3.5.1 Finite Difference Method (FDM)
 3.5.2 Finite Element Method (FEM)
 3.5.3 Boundary Element Method (BEM)
 3.5.4 Combination of finite element and boundary element methods
 3.6 The application of the finite element method in tunnelling
 3.6.1 “Step-by-Step” technique
 3.6.2 Iteration process
 3.6.3 Simulation of uncoupled partial excavations
 3.7 Special applications of the FEM in tunnelling
 3.7.1 Modelling of deformation slots
 3.7.2 Determination of the loosening of the rock mass from blasting
 3.8 Structural design
 3.8.1 General principles
 3.8.2 Design method for steel fibre concrete tunnel linings
 3.8.3 Conventionally reinforced shotcrete versus steel fibre shotcrete

4 Measurement for monitoring, probing and recording evidence
 4.1 General
 4.2 Measurement programme
 4.2.1 General
4.2.2 Measurements of construction states
- 4.2.2.1 Standard monitoring sections
- 4.2.2.2 Principal monitoring sections
- 4.2.2.3 Surface measurements
- 4.2.2.4 Basic rules for implementation and evaluation

4.2.3 Measurement of the final state
- 4.2.3.1 Measurement programme
- 4.2.3.2 Evaluation

4.2.4 Special features of shield drives
- 4.2.4.1 Instrumentation
- 4.2.4.2 Recording and evaluation of machine data

4.2.5 IT systems for the recording and evaluation of geotechnical data

4.3 Measurement processes, instruments
- 4.3.1 Deformation measurement
 - 4.3.1.1 Geodetic surveying
 - 4.3.1.2 Convergence measurements
 - 4.3.1.3 Optical surveying of displacement with electronic total station
 - 4.3.1.4 Surface surveying
 - 4.3.1.5 Extensometer measurements
 - 4.3.1.6 Inclinometer / deflectometer measurements
 - 4.3.1.7 Sliding micrometer measurements
 - 4.3.1.8 Trivec measurement

- 4.3.2 Profile surveying
 - 4.3.2.1 Photogrammetric scanner

- 4.3.3 Stress and strain measurements in the support layer
 - 4.3.3.1 Radial and tangential stress measurement in concrete
 - 4.3.3.2 Measurements in steel arches

- 4.3.4 Measurements of the loading and function of anchors
 - 4.3.4.1 Checking of anchor forces in unbonded anchors
 - 4.3.4.2 Checking of anchor forces with mechanical measurement anchors

4.4 Geophysical probing
- 4.4.1 Seismology
- 4.4.2 Geoelectrical
- 4.4.3 Gravimetric
- 4.4.4 Geomagnetic
- 4.4.5 Geothermal

- 4.4.6 Examples and experience
 - 4.4.6.1 Probing with SSP (Sonic Softground Probing)
 - 4.4.6.2 Probing karst caves

4.5 Monitoring and evidence-gathering measures for tunnelling beneath buildings and transport infrastructure
- 4.5.1 General
- 4.5.2 Monitoring and evidence-gathering measures
- 4.5.3 Noise and vibration protection
- 4.5.4 Permissible deformation of buildings
5 Dewatering, waterproofing and drainage

5.1 General

5.2 Dewatering during construction
5.2.1 Water quantity and difficulties
5.2.1.1 Water flow in the ground
5.2.1.2 Forms of underground water
5.2.1.3 Payment and quantity measurement
5.2.2 Measures to collect and drain formation water
5.2.2.1 Measures to collect water
5.2.2.2 Measures to drain water, open dewatering
5.2.2.3 Drainage boreholes and drainage tunnels
5.2.3 Obstructions and reduced performance
5.2.3.1 General description
5.2.3.2 Influence of formation water on the advance rate
5.2.3.3 Influence of formation water on tunnelling costs
5.2.4 Environmental impact and cleaning
5.2.4.1 Effect on the groundwater system
5.2.4.2 Effects on groundwater quality
5.2.5 Sealing formation water
5.2.5.1 Grouting process
5.2.5.2 Ground freezing

5.3 Tunnel waterproofing
5.3.1 Requirements
5.3.1.1 Required degree of water tightness
5.3.1.2 Requirements resulting from geological and hydrological conditions
5.3.1.3 Material requirements
5.3.1.4 Requirements for the construction process
5.3.1.5 Requirements for design and detailing
5.3.1.6 Maintenance
5.3.1.7 Requirements of the users
5.3.1.8 Requirements of environmental and waterways protection
5.3.1.9 Requirements of cost-effectiveness
5.3.2 Waterproofing concepts
5.3.2.1 Categorisation
5.3.2.2 Preliminary waterproofing
5.3.2.3 Main waterproofing
5.3.2.4 Repair of waterproofing
5.3.3 Waterproofing elements and materials
5.3.3.1 Waterproof concrete
5.3.3.2 Water-resistant plaster, sealing mortar, resin concrete
5.3.3.3 Bituminous waterproofing
5.3.3.4 Plastic waterproofing membranes
5.3.3.5 Sprayed waterproofing
5.3.3.6 Metallic waterproofing materials
5.3.4 Testing of seams in waterproofing membranes
5.4 Tunnel drainage
 5.4.1 The origin of sintering
 5.4.2 Design of tunnel drainage for low sintering
 5.4.3 Construction of tunnel drainage to reduce sintering
 5.4.3.1 Camera surveys of the pipe runs between the manholes
 5.4.3.2 Data processing and administration
 5.4.3.3 Other quality assurance measures during the construction phase
 5.4.4 Operation and maintenance of drainage systems to reduce sintering
 5.4.4.1 Concepts to reduce maintenance through improvements to systems
 5.4.4.2 Cleaning of drainage systems

6 New measurement and control technology in tunnelling
6.1 General
6.2 Measurement instruments
 6.2.1 Gyroscopic devices
 6.2.2 Lasers
 6.2.3 Optical components for laser devices
 6.2.4 Optical receiver devices
 6.2.5 Hose levelling instruments
 6.2.6 Inclinometer
6.3 Control in drill and blast tunnelling
 6.3.1 Drilling jumbo navigation
 6.3.2 Determining the position of a drilling boom
 6.3.3 Hydraulic parallel holding of the feeds
 6.3.4 Control of drill booms by microprocessors
 6.3.5 Hydraulic drill booms
6.4 Control of roadheaders
 6.4.1 Movement parameters determined by the control system
 6.4.2 Roadheader control system from Voest Alpine
 6.4.3 Roadheader control system from Eickhoff
 6.4.4 Roadheader control system from ZED
6.5 Control of tunnel boring machines (TBM)
 6.5.1 General
 6.5.2 Steering with laser beam and active target
6.6 Steering of small diameter tunnels
 6.6.1 General
 6.6.2 Steering with a ship's gyrocompass
 6.6.3 Pipe jacking steering with laser beam and active target
 6.6.4 Steering with travelling total station

7. Special features of scheduling tunnel works
7.1 General
7.2 Historical overview
7.3 General planning of tunnel drives
7.4 Planning tools
7.5 Control methods
- **7.5.1** Control of deadlines
- **7.5.2** Cost control

7.6 Examples of construction schedules
- **7.6.1** Construction schedule for the City Tunnel, Leipzig
- **7.6.2** Scheduling of rail tunnels through the example of the Landrücken Tunnel and the particular question of starting points
- **7.6.3** Scheduling of road tunnels through the example of the Arlberg Tunnel
- **7.6.4** Scheduling of inner-city tunnelling through the example of the Stadtbahn Dortmund
- **7.6.5** Scheduling of a shield tunnel through the example of Stadtbahn Essen

8 Safety and safety planning

8.1 General

8.2 International guidelines and national regulations
- **8.2.1** Directive 89/391/EEC
- **8.2.2** Directive 92/57/EEC
- **8.2.3** Directive 93/15/EEC
- **8.2.4** Directive 98/37/EC
- **8.2.5** Implementation into national regulations for blasting

8.3 Integrated safety plan
- **8.3.1** The safety plan as a management plan
- **8.3.2** Safety objectives
- **8.3.3** Ganger scenarios and risk analyses
- **8.3.4** Measures plan

8.4 Transport, storage and handling of explosives
- **8.4.1** Transport to the site
- **8.4.2** Storage on the site
- **8.4.3** Transport on site
- **8.4.4** Handling

8.5 Training of skilled workers

8.6 The construction site regulations (BaustellV)
- **8.6.1** General
- **8.6.2** The tools of the construction site regulations
- **8.6.3** The health and safety plan (health and safety plan)
- **8.6.4** Working steps in the production of a health and safety plan

8.7 Example of a tender for health and safety protection
- **8.7.1** General
- **8.7.2** Health and safety concept
- **8.7.2.1** Hazard analyses
- **8.7.2.2** Fire protection, escape and rescue concept
- **8.7.2.3** Health protection concept
- **8.7.2.4** Site facilities plans
- **8.7.2.5** Concept for traffic control measures inside the site area
- **8.7.2.6** Documents with information for later works to the structure
- **8.7.2.7** Measures to prevent danger to third parties resulting from the duty to maintain road safety
9 Special features in tendering, award and contract
9.1 General
9.2 Examples of forms of contract
 9.2.1 Procedure in Switzerland
 9.2.2 Procedure in the Netherlands
 9.2.3 Procedure in Germany
9.3 Design and geotechnical requirements for the tendering of mechanised tunnelling as an alternative proposal
 9.3.1 General
 9.3.2 Examples: Adler Tunnel, Sieberg Tunnel, Stuttgart Airport Tunnel, Rennsteig Tunnel, Lainzer Tunnel
 9.3.3 Additional requirements for mechanised tunnelling in the tender documents
 9.3.4 Costs as a decision criterion
 9.3.5 Outlook

10 Process controlling and data management
10.1 Introduction
10.2 Procedure
10.3 Data management
10.4 Target-actual comparison
10.5 Target process structure
10.6 Analysis of the actual process

11 DAUB recommendations for the selection of tunnelling machines
11.1 Preliminary notes
11.2 Regulatory works
 11.2.1 National regulations
 11.2.2 International standards
 11.2.3 Standards and other regulatory works
11.3 Definitions and abbreviations
 11.3.1 Definitions
 11.3.2 Abbreviations
11.4 Application and structure of the recommendations
11.5 Categorisation of tunnelling machines
 11.5.1 Types of tunnelling machine (TVM)
 11.5.2 Tunnel boring machines (TBM)
 11.5.2.1 Tunnel boring machines without shield (Gripper TBM)
 11.5.2.2 Enlargement tunnel boring machines (ETBM)
 11.5.2.3 Tunnel boring machine with shield (TBM-S)
 11.5.3 Double shield machines (DSM)
 11.5.4 Shield machines (SM)
 11.5.4.1 Shield machines for full-face excavation (SM-V)
 11.5.4.2 Shield machines with partial face excavation (SM-T)
 11.5.5 Adaptable shield machines with convertible process technology (KSM)
11.5.6 Special types
11.5.6.1 Blade shields
11.5.6.2 Shields with multiple circular cross-sections
11.5.6.3 Articulated shields
11.5.7 Support and lining
11.5.7.1 Tunnel boring machines (TBM)
11.5.7.2 Tunnel boring machines with shield (TBM-S), Shield machines (SM, DSM, KSM)
11.5.7.3 Advance support
11.5.7.4 Support next to the tunnelling machine

11.6 Ground and system behaviour
11.6.1 Preliminary remarks
11.6.2 Ground stability and face support
11.6.3 Excavation
11.6.3.1 Sticking
11.6.3.2 Wear
11.6.3.3 Soil conditioning
11.6.3.4 Soil separation
11.6.3.5 Soil transport and tipping

11.7 Environmental aspects

11.8 Other project conditions

11.9 Scope of application and selection criteria
11.9.1 General notes about the use of the tables
11.9.1.1 Core area of application
11.9.1.2 Possible areas of application
11.9.1.3 Critical areas of application
11.9.1.4 Classification in soft ground
11.9.1.5 Classification in rock
11.9.2 Notes about each type of tunnelling machine
11.9.2.1 TBM (Tunnel boring machine)
11.9.2.2 DSM (Double shield machines)
11.9.2.3 SM-V1 (full-face excavation, face without support)
11.9.2.4 SM-V2 (full-face excavation, face with mechanical support)
11.9.2.5 SM-V3 (full-face excavation, face with compressed air application)
11.9.2.6 SM-V4 (full-face excavation, face with slurry support)
11.9.2.7 SM-V5 (full-face excavation, face with earth pressure balance support)
11.9.2.8 SM-T1 (partial excavation, face without support)
11.9.2.9 SM-T2 (partial excavation, face with mechanical support)
11.9.2.10 SM-T3 (partial excavation, face with compressed air application)
11.9.2.11 SM-T4 (partial excavation, face with slurry support)
11.9.2.12 KSM (Convertible shield machines)

11.10 Appendices