Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Notation</td>
<td>xi</td>
</tr>
<tr>
<td>1 Precast Concepts, History and Design Philosophy</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A Historical Note on the Development of Precast Frames</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Scope for Prefabricated Buildings</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1 Modularisation and standardisation</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Current Attitudes towards Precast Concrete Structures</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Recent Trends in Design, and a New Definition for Precast Concrete</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Precast Superstructure Simply Explained</td>
<td>23</td>
</tr>
<tr>
<td>1.5.1 Differences in precast and cast-in situ concrete structures</td>
<td>23</td>
</tr>
<tr>
<td>1.5.2 Structural stability</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3 Floor plate action</td>
<td>29</td>
</tr>
<tr>
<td>1.5.4 Connections and joints</td>
<td>30</td>
</tr>
<tr>
<td>1.5.5 Foundations</td>
<td>32</td>
</tr>
<tr>
<td>1.6 Precast Design Concepts</td>
<td>32</td>
</tr>
<tr>
<td>1.6.1 Devising a precast solution</td>
<td>32</td>
</tr>
<tr>
<td>1.6.2 Construction methods</td>
<td>36</td>
</tr>
<tr>
<td>2 Procurement and Documentation</td>
<td>43</td>
</tr>
<tr>
<td>2.1 Initial Considerations for the Design Team</td>
<td>43</td>
</tr>
<tr>
<td>2.2 Design Procurement</td>
<td>45</td>
</tr>
<tr>
<td>2.2.1 Definitions</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2 Responsibilities</td>
<td>45</td>
</tr>
<tr>
<td>2.2.3 Routes to procurement</td>
<td>46</td>
</tr>
<tr>
<td>2.2.4 Design office practice</td>
<td>46</td>
</tr>
<tr>
<td>2.2.5 Project design stages</td>
<td>48</td>
</tr>
<tr>
<td>2.2.6 Structural design calculations</td>
<td>49</td>
</tr>
<tr>
<td>2.2.7 Layout drawings</td>
<td>50</td>
</tr>
<tr>
<td>2.2.8 Component schedules and the engineer's instructions to factory and site</td>
<td>54</td>
</tr>
<tr>
<td>2.3 Construction Matters</td>
<td>58</td>
</tr>
<tr>
<td>2.3.1 Design implications</td>
<td>58</td>
</tr>
<tr>
<td>2.4 Codes of Practice, Design Manuals, Textbooks and Technical Literature</td>
<td>60</td>
</tr>
<tr>
<td>2.4.1 Codes and Building Regulations</td>
<td>60</td>
</tr>
<tr>
<td>2.4.2 Non-mandatory design documents</td>
<td>64</td>
</tr>
<tr>
<td>2.4.3 Other literature on precast structures</td>
<td>67</td>
</tr>
<tr>
<td>2.5 Definitions</td>
<td>68</td>
</tr>
<tr>
<td>2.5.1 General structural definitions</td>
<td>68</td>
</tr>
<tr>
<td>2.5.2 Components</td>
<td>68</td>
</tr>
<tr>
<td>2.5.3 Connections and jointing materials</td>
<td>69</td>
</tr>
</tbody>
</table>
3 Architectural and Framing Considerations

3.1 Frame and Component Selection

- 3.1.1 General principles
- 3.1.2 Roof and floor slabs
- 3.1.3 Staircases
- 3.1.4 Roof and floor beams
- 3.1.5 Beam-to-column connections
- 3.1.6 Columns
- 3.1.7 Bracing walls

3.2 Component Selection

3.2.1 General principles

- 3.2.2 Roof and floor slabs
- 3.2.3 Staircases
- 3.2.4 Roof and floor beams
- 3.2.5 Beam-to-column connections
- 3.2.6 Columns
- 3.2.7 Bracing walls

3.3 Special Features

- 3.3.1 Hybrid and mixed construction
- 3.3.2 Precast—*in situ* concrete structures
- 3.3.3 Structural steelwork and precast concrete in skeletal frames
- 3.3.4 Precast concrete with structural and glue-laminated timber
- 3.3.5 Precast concrete—masonry structures
- 3.3.6 The future of mixed construction

3.4 Balconies

4 Design of Skeletal Structures

4.1 Basis for the Design

4.2 Materials

- 4.2.1 Concrete
- 4.2.2 Concrete admixtures
- 4.2.3 Reinforcement
- 4.2.4 Prestressing steel
- 4.2.5 Structural steel and bolts
- 4.2.6 Non-cementitious materials

4.3 Structural Design

- 4.3.1 Terminology
- 4.3.2(a) Design methods
- 4.3.2(b) Reduced partial safety factors for precast design
- 4.3.3 Design of beams
- 4.3.4 Non-composite reinforced concrete beams
- 4.3.5 Beam boot design
- 4.3.6 Upstand design
- 4.3.7 Non-composite prestressed beams
- 4.3.8 Beam end shear design
- 4.3.9 Recessed beam ends
- 4.3.10 Design methods for end shear
- 4.3.11 Hanging shear cages for wide beams
- 4.3.12 Prefabricated shear boxes

4.4 Columns Subjected to Gravity Loads

- 4.4.1 General design
- 4.4.2 Columns in braced structures
- 4.4.3 Columns in unbraced structures
- 4.4.4 Columns in partially braced structures

4.5 Staircases

- 4.5.1 Reinforced concrete staircases
- 4.5.2 Prestressed concrete staircases
- 4.5.3 Staircase and landing end reinforcement
5 Design of Precast Floors Used in Precast Frames 245
5.1 Flooring Options 245
5.2 Hollow-core Slabs 249
5.2.1 General 249
5.2.2 Design 253
5.2.3 Design of cross section 257
5.2.4 Web thickness 257
5.2.5 Edge profiles 258
5.2.6 Reinforcement 260
5.2.7 Lateral load distribution 260
5.2.8 Flexural capacity 267
5.2.9 Precamber and deflections 272
5.2.10 Shear capacity 275
5.2.11 Anchorage and bond development lengths 288
5.2.12 Slippage of tendons 291
5.2.13 Calculation of crack width 295
5.2.14 Cantilever design using hollow-core slabs 298
5.2.15 Bearing capacity 300
5.2.16 Wet cast hollow-core flooring 301
5.2.17 Summary examples of product design data 305
5.3 Double-Tee Slabs 309
5.3.1 General 309
5.3.2 Design 312
5.3.3 Flexural and shear capacity, precamber and deflections 314
5.3.4 Special design situations 315
5.4 Composite Plank Floor 315
5.4.1 General 315
5.4.2 Design 316
5.4.3 Voided composite slab 320
5.5 Precast Beam-and-Plank Flooring 324
5.5.1 General 324
5.5.2 Design of prestressed beams in the beam-and-plank flooring system 325
5.6 Design Calculations 325
5.6.1 Hollow-core unit 325

6 Composite Construction 335
6.1 Introduction 335
6.2 Texture of Precast Concrete Surfaces 339
6.2.1 Classification of surface textures 339
6.2.2 Surface treatment and roughness 340
6.2.3 Effects of surface preparation 341
6.3 Calculation of Stresses at the Interface 344
6.4 Losses and Differential Shrinkage Effects 346
6.4.1 Losses in prestressed composite sections 346
6.4.2 Design method for differential shrinkage 347
6.4.3 Cracking in the precast and in situ concrete 351
6.5 Composite Floors 352
6.5.1 General considerations 352
6.5.2 Flexural analysis for prestressed concrete elements 354
6.5.3 Propping 356
6.5.4 Design calculations 358
6.5.5 Ultimate limit state of shear 360
6.6 Economic Comparison of Composite and Non-composite Hollow-core Floors 364
6.7 Composite Beams
 6.7.1 Flexural design 365
 6.7.2 Propping 370
 6.7.3 Horizontal interface shear 370
 6.7.4 Shear check 370
 6.7.5 Deflections 371

7 Design of Connections and Joints 375
7.1 Development of Connections 375
7.2 Design Brief 377
7.3 Joints and Connections 383
7.4 Criteria for Joints and Connections
 7.4.1 Design criteria 384
7.5 Types of Joint
 7.5.1 Compression joints 386
 7.5.2 Tensile joints 385
 7.5.3 Shear joints 396
 7.5.4 Flexural and torsional joints 404
7.6 Bearings and Bearing Stresses
 7.6.1 Average bearing stresses 405
 7.6.2 Localised bearing stresses 412
7.7 Connections
 7.7.1 Pinned connections 413
 7.7.2 Moment-resisting connections 413
7.8 Design of Specific Connections in Skeletal Frames
 7.8.1 Floor slab to beam connections 425
 7.8.2 Connections at supports 426
 7.8.3 Connections at longitudinal joints 430
 7.8.4 Floor connections at load-bearing walls – load-bearing components 431
7.9 Beam-to-Column and Beam-to-Wall Connections 435
 7.9.1 Definitions for different assemblies 435
 7.9.2 Connections to continuous columns using hidden steel inserts 436
 7.9.3 Beam-to-column inserts 436
7.10 Column Insert Design 438
 7.10.1 General considerations 438
 7.10.2 Single-sided wide-section insert connections 442
 7.10.3 Addition of welded reinforcement to wide-section inserts 453
 7.10.4 Double-sided wide-section inserts 457
 7.10.5 Three- and four-way wide-section connections 462
 7.10.6 Narrow-plate column inserts 467
 7.10.7 Cast-in sockets 468
 7.10.8 Bolts in sleeves 468
7.11 Connections to Columns on Concrete Ledges 470
 7.11.1 Corbels 470
 7.11.2 Haunched columns 485
 7.11.3 Connections to the tops of columns 491
7.12 Beam-to-Beam Connections 493
7.13 Column Splices
 7.13.1 Types of splice 503
 7.13.2 Column-to-column splices 504
7.13.3 Coupled joint splice
7.13.4 Welded plate splice
7.13.5 Grouted sleeve splice
7.13.6 Welded lap splice
7.13.7 Grouted sleeve coupler splice
7.13.8 Steel shoe splices
7.13.9 Columns spliced onto beams or other precast components

7.14 Column Base Connections
7.14.1 Columns in pockets
7.14.2 Columns on base plates
7.14.3 Columns on grouted sleeves

8 Designing for Horizontal Load
8.1 Introduction
8.2 Distribution of Horizontal Load
8.3 Horizontal Diaphragm Action in Precast Concrete Floors without Structural Toppings
8.3.1 Background
8.3.2 Details
8.3.3 Structural models for diaphragm action
8.3.4 Diaphragm reinforcement
8.3.5 Design by testing
8.3.6 Finite element analysis of the floor plate
8.4 Diaphragm Action in Composite Floors with Structural Toppings
8.5 Horizontal Forces due to Volumetric Changes in Precast Concrete
8.6 Vertical Load Transfer
8.6.1 Introduction
8.6.2 Unbraced structures
8.6.3 Deep spandrel beams in unbraced structures
8.6.4 Braced structures
8.6.5 Uni-directionally braced structures
8.6.6 Partially braced structures
8.7 Methods of Bracing Structures
8.7.1 Infill shear walls
8.7.2 Design methods for infill concrete walls
8.7.3 Design method for brickwork infill panels
8.7.4 Infills without beam framing elements
8.7.5 Use of slip-formed or extruded hollow-core walls as infill walls
8.7.6 Cantilever shear walls and shear boxes
8.7.7 Hollow-core cantilever shear walls
8.7.8 Solid cantilever shear walls

9 Structural Integrity and the Design for Accidental Loading
9.1 Precast Frame Integrity – The Vital Issue
9.2 Ductile Frame Design
9.2.1 Structural continuity in precast skeletal frames
9.3 Background to the Present Requirements
9.4 Categorisation of Buildings
9.5 The Fully Tied Solution
9.5.1 Horizontal ties
9.5.2 Calculation of tie forces.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.3 Horizontal ties to columns</td>
<td>654</td>
</tr>
<tr>
<td>9.5.4 Ties at balconies</td>
<td>659</td>
</tr>
<tr>
<td>9.5.5 Vertical ties</td>
<td>659</td>
</tr>
<tr>
<td>9.6 Catenary Systems in Precast Construction</td>
<td>662</td>
</tr>
<tr>
<td>10 Site Practice and Temporary Stability</td>
<td>667</td>
</tr>
<tr>
<td>10.1 The Effects of Construction Techniques on Design</td>
<td>667</td>
</tr>
<tr>
<td>10.2 Designing for Pitching and Lifting</td>
<td>672</td>
</tr>
<tr>
<td>10.2.1 Early lifting strengths</td>
<td>672</td>
</tr>
<tr>
<td>10.2.2 Lifting points</td>
<td>672</td>
</tr>
<tr>
<td>10.2.3 Handling</td>
<td>685</td>
</tr>
<tr>
<td>10.2.4 Cracks</td>
<td>685</td>
</tr>
<tr>
<td>10.3 Temporary Frame Stability</td>
<td>690</td>
</tr>
<tr>
<td>10.3.1 Propping</td>
<td>690</td>
</tr>
<tr>
<td>10.3.2 The effect of erection sequence</td>
<td>691</td>
</tr>
<tr>
<td>10.3.3 Special consideration for braced frames</td>
<td>692</td>
</tr>
<tr>
<td>10.3.4 Special considerations for unbraced frames</td>
<td>694</td>
</tr>
<tr>
<td>10.3.5 Temporary loads</td>
<td>696</td>
</tr>
<tr>
<td>10.4 On-Site Connections</td>
<td>697</td>
</tr>
<tr>
<td>10.4.1 Effect of fixing types</td>
<td>697</td>
</tr>
<tr>
<td>10.4.2 Strength and maturity of connections</td>
<td>699</td>
</tr>
<tr>
<td>10.5 Erection Procedure</td>
<td>699</td>
</tr>
<tr>
<td>10.5.1 Site preparation</td>
<td>699</td>
</tr>
<tr>
<td>10.5.2 Erection of precast superstructure</td>
<td>700</td>
</tr>
<tr>
<td>10.6 In situ Concrete</td>
<td>709</td>
</tr>
<tr>
<td>10.6.1 General specification</td>
<td>709</td>
</tr>
<tr>
<td>10.6.2 Concrete screeds and joint infill in floors</td>
<td>711</td>
</tr>
<tr>
<td>10.6.3 Grouting</td>
<td>712</td>
</tr>
<tr>
<td>10.7 Handover</td>
<td>714</td>
</tr>
</tbody>
</table>

References 715
Index 729