Contents

Contributor contact details xv
Woodhead Publishing Series in Energy xxi
Preface xxvii

Part I Introduction to modern earth buildings 1

1 Overview of modern earth building 3
M. R. Hall, University of Nottingham, UK, R. Lindsay, Earth Structures Group, Australia and M. Krähenhoff, SIREWALL Inc, Canada

1.1 Introduction 3
1.2 Definition of modern earth building 5
1.3 The significance of modern earth building in the current and future construction industries 6
1.4 Changes in the modern earth building industry 7
1.5 Managing the demands of the modern construction industry 10
1.6 References 16

2 Hygrothermal behaviour and occupant comfort in modern earth buildings 17
M. R. Hall and S. Casey, University of Nottingham, UK

2.1 Introduction 17
2.2 Hygrothermal loads and modelling 19
2.3 Thermal and hygric properties of earth materials 25
2.4 Hygrothermal behaviour and passive air conditioning 29
2.5 Indoor health and air quality 33
2.6 Sources of further information 36
2.7 References 37
2.8 Appendix: nomenclature 40
Contents

3 Fabric insulation, thermal bridging and acoustics in modern earth buildings

C. J. Hope, Cardiff University, UK and M. R. Hall, University of Nottingham, UK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Approaches to fabric insulation</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Thermal bridging theory</td>
<td>56</td>
</tr>
<tr>
<td>3.4 Thermal bridging simulation tools</td>
<td>60</td>
</tr>
<tr>
<td>3.5 Acoustic reverberation</td>
<td>62</td>
</tr>
<tr>
<td>3.6 Sources of further information</td>
<td>67</td>
</tr>
<tr>
<td>3.7 References</td>
<td>69</td>
</tr>
<tr>
<td>3.8 Appendix: nomenclature</td>
<td>71</td>
</tr>
</tbody>
</table>

4 Modern earth building codes, standards and normative development

H. Schroeder, Bauhaus University Weimar, Germany

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction: a short history of building codes for using earth as a building material</td>
<td>72</td>
</tr>
<tr>
<td>4.2 Types of ‘standards’ for earth buildings</td>
<td>75</td>
</tr>
<tr>
<td>4.3 Normative documents for earth building</td>
<td>77</td>
</tr>
<tr>
<td>4.4 Selecting the parameters for earth building standards</td>
<td>87</td>
</tr>
<tr>
<td>4.5 New developments in earth building standards</td>
<td>98</td>
</tr>
<tr>
<td>4.6 Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>4.7 References</td>
<td>105</td>
</tr>
</tbody>
</table>

5 Passive house design: a benchmark for thermal mass fabric integration

L. Röngen, University of Applied Sciences, Erfurt and Röngen Architects, Germany

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>110</td>
</tr>
<tr>
<td>5.2 Description of Passive House</td>
<td>112</td>
</tr>
<tr>
<td>5.3 Functional principles of Passive House</td>
<td>117</td>
</tr>
<tr>
<td>5.4 Case studies of Passive Houses in different climates</td>
<td>128</td>
</tr>
<tr>
<td>5.5 Examples of Passive House architecture in Germany</td>
<td>134</td>
</tr>
<tr>
<td>5.6 Future trends</td>
<td>148</td>
</tr>
<tr>
<td>5.7 Sources of further information</td>
<td>151</td>
</tr>
<tr>
<td>5.8 References</td>
<td>151</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2012
Contents

Part II Earth materials engineering and earth construction

6 Soil materials for earth construction: properties, classification and suitability testing
 L. N. Reddi, Florida International University, USA, A. K. Jain and H-B. Yun, University of Central Florida, USA
 153
 6.1 Introduction 155
 6.2 Soil formation 155
 6.3 Soil types 157
 6.4 Soil consistency 163
 6.5 Compaction of soil 167
 6.6 Conclusion 170
 6.7 References 170
 6.8 Appendix 171

7 Alternative and recycled materials for earth construction
 A. Dawson, University of Nottingham, UK
 172
 7.1 Introduction 172
 7.2 Classification 176
 7.3 Types of alternative material 179
 7.4 Characteristics of alternative and recycled materials 190
 7.5 Form of recycled and alternative materials: bulk or binder 193
 7.6 Leaching 195
 7.7 Physical and mechanical properties of alternative and recycled materials 197
 7.8 The use and reuse life cycle 198
 7.9 Future trends and conclusions 200
 7.10 Sources of further information 201
 7.11 References 201
 7.12 Appendix 203

8 Soil mechanics and earthen construction: strength and mechanical behaviour
 C. E. Augarde, Durham University, UK
 204
 8.1 Introduction 204
 8.2 Basic mechanics 205
 8.3 Fundamental soil behaviour 209
 8.4 Effective stress 211
 8.5 Models of shear strength for soils 212
 8.6 Unsaturated soil behaviour 217
 8.7 The use of soil mechanics in earthen construction 220

© Woodhead Publishing Limited, 2012
viii Contents

8.8 Future trends 220
8.9 Sources of further information 221
8.10 References 221

9 Soil stabilisation and earth construction: materials, properties and techniques 222
 M. R. Hall, K. B. Najm and P. Keikheil Deheizi, University of Nottingham, UK

9.1 Introduction 222
9.2 Lime stabilisation 225
9.3 Cement and pozzolans 229
9.4 Bituminous binders and emulsions 241
9.5 Synthetic binders, polymers and adhesives 246
9.6 Fibre reinforcement 247
9.7 Selection tool for modern stabilised earth construction 249
9.8 References 253

10 Integral admixtures and surface treatments for modern earth buildings 256
 R. Kebao and D. Kagi, Tech-Dry Building Protection Systems Pty Ltd, Australia

10.1 Introduction 256
10.2 Integral admixtures for modern earth construction 258
10.3 Surface treatment for modern earth buildings 270
10.4 Future trends 279
10.5 Sources of information 281
10.6 References 281

11 Weathering and durability of earthen materials and structures 282
 J-C. Morel, University of Lyon, France, Q-B. Bus, University of Savoie, France and E. Hamard, IFSTTAR, France

11.1 Introduction 282
11.2 Water content increase in earthen walls 283
11.3 Strategies to increase the durability of earth walls 286
11.4 Current tests for assessing the durability of earthen materials 288
11.5 Surface coatings and finishes of earth structures 293
11.6 Long-term performance testing of earth walls 297
11.7 Future trends and conclusions 299
11.8 Acknowledgements 300
11.9 Sources of further information 301
11.10 References 302

© Woodhead Publishing Limited, 2012
Contents ix

Part III Earth building technologies and earth construction techniques 305

12 History of earth building techniques 307

12.1 Introduction 307

12.2 Earth building techniques in Asia 309

12.3 Earth building techniques in Africa 313

12.4 Earth building techniques in Europe 315

12.5 Earth building techniques in North America 316

12.6 Earth building techniques in South America 318

12.7 Earth building techniques in Australasia 319

12.8 Conclusions 320

12.9 Bibliography 321

13 Stabilised soil blocks for structural masonry in earth construction 324

13.1 Introduction 324

13.2 Soil stabilisation techniques 327

13.3 Production of stabilised soil blocks (SSBs) 330

13.4 Characteristics of stabilised soil blocks (SSB) 336

13.5 Cement-soil mortars for stabilised soil block (SSB) masonry 349

13.6 Stabilised soil block masonry 351

13.7 Long-term performance, repair and retrofitting of stabilised soil block (SSB) buildings 353

13.8 Case studies of cement stabilised soil block (CSSB) buildings 356

13.9 References 361

14 Modern rammed earth construction techniques 364

14.1 Introduction 364

14.2 Material sourcing 366

14.3 Proportioning and mixing 368

14.4 Formwork 371

14.5 Installation 377

14.6 Future trends and conclusions 383

14.7 Sources of further information 384

© Woodhead Publishing Limited, 2012
Contents

15 Pneumatically impacted stabilized earth (PISE) construction techniques
 D. EASTON, Rammed Earth Works, USA
 385
 15.1 Introduction
 385
 15.2 Materials used for pneumatically impacted stabilized earth (PISE) construction
 388
 15.3 The forming system
 389
 15.4 Reinforcement of pneumatically impacted stabilized earth (PISE) walls
 391
 15.5 Equipment for proportioning, mixing and placement
 392
 15.6 The pneumatically impacted stabilized earth (PISE) method
 395
 15.7 Conclusion
 399
 15.8 Appendix
 399

16 Conservation of historic earth buildings
 G. CALABRESE, Architect, Australia
 401
 16.1 Introduction
 401
 16.2 Common causes of deterioration on historic earth buildings
 402
 16.3 Conservation of earth architecture
 404
 16.4 Case study of the UNESCO heritage site of Diriyah in the Atturaf region of Saudi Arabia
 405
 16.5 Case study of earth buildings in Italy: Loreto Aprutino in the Abruzzo region
 415
 16.6 Conclusions
 423
 16.7 Sources of further information
 424
 16.8 References
 424

Part IV Modern earth structural engineering

17 Earth masonry structures: arches, vaults and domes
 J. F. D. DAHMEN, University of British Columbia, Canada and J. A. OBERENDORF, MIT, USA
 425
 17.1 Introduction
 427
 17.2 Structural theory for arches, vaults and domes
 429
 17.3 Earth masonry arches
 436
 17.4 Earth masonry vaults
 437
 17.5 Earth masonry domes
 448
 17.6 Material properties of earth masonry structure
 453
 17.7 Design and construction criteria for earth masonry structures
 456
 17.8 Future trends
 457
 17.9 Acknowledgments
 458
 17.10 Sources of further information
 458

© Woodhead Publishing Limited, 2012
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.11</td>
<td>References</td>
<td>459</td>
</tr>
<tr>
<td>18</td>
<td>Structural steel elements within stabilised rammed earth walling</td>
<td>461</td>
</tr>
<tr>
<td>R. Lindsay, Earth Structures Group, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>461</td>
</tr>
<tr>
<td>18.2</td>
<td>Structural steel for stabilised rammed earth (SRE) walling</td>
<td>461</td>
</tr>
<tr>
<td>18.3</td>
<td>Design parameters for using structural steel within stabilised rammed earth (SRE) walling</td>
<td>465</td>
</tr>
<tr>
<td>18.4</td>
<td>The use of steel lintels for stabilised rammed earth (SRE) applications</td>
<td>468</td>
</tr>
<tr>
<td>18.5</td>
<td>Steel columns embedded within stabilised rammed earth (SRE) walls</td>
<td>470</td>
</tr>
<tr>
<td>18.6</td>
<td>Structural systems for elevated or ‘precast’ stabilised rammed earth (SRE) panels</td>
<td>474</td>
</tr>
<tr>
<td>18.7</td>
<td>North American structural steel</td>
<td>478</td>
</tr>
<tr>
<td>18.8</td>
<td>Conclusion</td>
<td>479</td>
</tr>
<tr>
<td>18.9</td>
<td>Acknowledgements</td>
<td>479</td>
</tr>
<tr>
<td>18.10</td>
<td>Sources of further information</td>
<td>479</td>
</tr>
<tr>
<td>19</td>
<td>Natural disasters and earth buildings: resistant design and construction</td>
<td>481</td>
</tr>
<tr>
<td>H. W. Morris, University of Auckland, New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>481</td>
</tr>
<tr>
<td>19.2</td>
<td>Earthquakes and earth buildings</td>
<td>485</td>
</tr>
<tr>
<td>19.3</td>
<td>Earthquake engineering</td>
<td>498</td>
</tr>
<tr>
<td>19.4</td>
<td>Wind and storms</td>
<td>522</td>
</tr>
<tr>
<td>19.5</td>
<td>Earth building design for wind resistance</td>
<td>525</td>
</tr>
<tr>
<td>19.6</td>
<td>Flood hazards and earth buildings</td>
<td>529</td>
</tr>
<tr>
<td>19.7</td>
<td>Volcanoes and landslides</td>
<td>531</td>
</tr>
<tr>
<td>19.8</td>
<td>Future trends</td>
<td>533</td>
</tr>
<tr>
<td>19.9</td>
<td>Sources of further information</td>
<td>533</td>
</tr>
<tr>
<td>19.10</td>
<td>References</td>
<td>534</td>
</tr>
<tr>
<td>20</td>
<td>Embankments and dams</td>
<td>538</td>
</tr>
<tr>
<td>W. Wu, T. G. Berge and T. Asfour, University of Natural Resources and Applied Life Sciences, Austria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>538</td>
</tr>
<tr>
<td>20.2</td>
<td>Types and selection of embankment dams</td>
<td>539</td>
</tr>
<tr>
<td>20.3</td>
<td>Zoning of embankment dams and construction materials</td>
<td>541</td>
</tr>
<tr>
<td>20.4</td>
<td>Embankment dam construction specifications</td>
<td>543</td>
</tr>
<tr>
<td>20.5</td>
<td>Stability analysis of embankment dams</td>
<td>548</td>
</tr>
<tr>
<td>20.6</td>
<td>Dam freeboard equipment</td>
<td>549</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2012
Contents

20.7 Failure mechanisms 549
20.8 Maintenance of embankment dams 554
20.9 Future trends 555
20.10 Norms and standards 556
20.11 References 557

Part V Application of modern earth construction: international case studies 559

21 North American modern earth construction 561
M. KRAYENHOFF, SIREWALL Inc., Canada

21.1 Introduction 561
21.2 Seventh generation thinking and earth construction 563
21.3 The interplay of indoor and outdoor weather 564
21.4 Applications of earth construction in hot climates 583
21.5 Applications of earth construction in wet and cold climates 585
21.6 Optimizing rammed earth compressive strength 587
21.7 North American-style rammed earth 594
21.8 Case studies of North American earth construction 600
21.9 Design elegance of modern earth buildings 604
21.10 Future trends 606
21.11 Sources of further information 608
21.12 Acknowledgements 608

22 Australian modern earth construction 609
R. LINDSAY, Earth Structures Group, Australia

22.1 Introduction 609
22.2 Uses of stabilised rammed earth in different regions of Australia 610
22.3 Approaches to material type and selection 612
22.4 Formwork and construction techniques: the ‘Stabilform system’ 616
22.5 Stabilised rammed earth (SRE) walls 632
22.6 Designing for thermal comfort 635
22.7 Standards and specifications for modern earth construction in Australia 639
22.8 The cost of stabilised rammed earth (SRE) construction in Australia 640
22.9 Case studies of modern earth buildings in Victoria, Australia 641
22.10 Future trends 646

© Woodhead Publishing Limited, 2012
22.11 Sources of further information 647
22.12 Acknowledgements 648
22.13 References 648

23 European modern earth construction 650
M. R. HALL, University of Nottingham, UK and W. SWANEY, Earth Structures (Europe) Ltd, UK

23.1 Introduction 650
23.2 Conservation and revival of traditional techniques 651
23.3 Modern earth construction techniques 654
23.4 Case studies of modern earth buildings throughout Europe 663
23.5 Future trends 682
23.6 Acknowledgements 685
23.7 Sources of further information 685
23.8 References 687

24 Modern rammed earth construction in China 688
R. K. WALLIS, SIREWALL China, GIGA and A00 Architecture, China

24.1 Introduction 688
24.2 Challenges for modern rammed earth construction in China 689
24.3 Opportunities for modern rammed earth construction in China 691
24.4 Approaches to material type and selection 692
24.5 Construction techniques and formwork 697
24.6 Case studies 699
24.7 Future trends 710
24.8 References 711

Appendices 713

A1 Techno-economic analysis and environmental assessment of stabilised rammed earth (SRE) building construction 715
R. LINDSAY, Earth Structures Group, Australia

A1.1 Introduction 715
A1.2 The technical parameters of modern earth wall construction 716
A1.3 An economic analysis of modern earth wall construction 722
A1.4 An environmental analysis of modern earth wall construction 728

© Woodhead Publishing Limited, 2012
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.5</td>
<td>Conclusions</td>
<td>733</td>
</tr>
<tr>
<td>A1.6</td>
<td>References</td>
<td>734</td>
</tr>
<tr>
<td>A2</td>
<td>Techno-economic analysis and environmental assessment of stabilized insulated rammed earth (SIREWALL) building</td>
<td>735</td>
</tr>
<tr>
<td>M. Krayenhoff, SIREWALL Inc., Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2.1</td>
<td>Introduction</td>
<td>735</td>
</tr>
<tr>
<td>A2.2</td>
<td>The environmental impact of stabilized insulated rammed earth building</td>
<td>736</td>
</tr>
<tr>
<td>A2.3</td>
<td>The economic impact of stabilized insulated rammed earth building</td>
<td>742</td>
</tr>
<tr>
<td>A2.4</td>
<td>Stabilized insulated rammed earth building technologies</td>
<td>744</td>
</tr>
<tr>
<td>A2.5</td>
<td>Acknowledgements</td>
<td>748</td>
</tr>
<tr>
<td>A2.6</td>
<td>References</td>
<td>748</td>
</tr>
</tbody>
</table>

Index 749