Polymer modified bitumen
Properties and characterisation

Edited by
Tony McNally
Contents

Contributor contact details ix

1 Introduction to polymer modified bitumen (PmB) 1
 T. McNALLY, Queen's University Belfast, UK
 1.1 Bitumen 1
 1.2 Polymer modified bitumen 8
 1.3 Introduction to Polymer modified bitumen: properties and characterisation 14
 1.4 References 15

Part I Types of polymer modified bitumen 23

2 Polymer modified bitumen emulsions (PMBEs) 25
 D. LESUEUR, Lhoist R&D, Belgium
 2.1 Introduction 25
 2.2 Manufacturing polymer modified bitumen emulsions (PMBEs) 26
 2.3 Uses of PMBE 35
 2.4 Conclusions 38
 2.5 References 40

3 Modification of bitumen using polyurethanes 43
 P. PARTAL and F. J. MARTINEZ-BUXA, Universidad de Huelva, Spain
 3.1 Introduction 43
 3.2 Bitumen modification by polymers 44
 3.3 Modification by isocyanate-based reactive polymers 46
 3.4 The role of the bitumen colloidal nature 49
 3.5 Polyurethane/urea-based modified bitumen 55
 3.6 Bitumen foaming and future trends 59
 3.7 Sources of further information and advice 67
 3.8 References 68

© Woodhead Publishing Limited, 2011
Contents

4 Rubber modified bitumen

I. Gawel, Wroclaw University of Technology, Poland, J. Pilat, P. Radziszewski, K. J. Kowalski and J. B. Król, Warsaw University of Technology, Poland

4.1 Introduction .. 72
4.2 Waste rubber recycling ... 73
4.3 Shredding of scrap rubber from tyres 75
4.4 Methods of bitumen modification with crumb rubber 76
4.5 Rubber–bitumen interactions 78
4.6 Properties of rubber modified bitumen 84
4.7 Properties of asphalt–rubber mixture 87
4.8 Performance of pavement with asphalt–rubber mixture ... 90
4.9 Economic benefits ... 92
4.10 Conclusions ... 93
4.11 References .. 93

5 The use of waste polymers to modify bitumen

F. J. Navarro Dominguez and M. Garcia-Morales, Universidad de Huelva, Spain

5.1 Introduction .. 98
5.2 Processing of waste polymer modified bitumens 100
5.3 Thermomechanical properties of waste polymer modified bitumens .. 111
5.4 Future trends ... 132
5.5 Sources of further information and advice 133
5.6 References .. 133

6 Polypropylene fiber-reinforced bitumen

S. Tapkin, Ü. Uşar and Ş. Özcan, Anadolu University, Turkey and A. Çevik, University of Gaziantep, Turkey

6.1 Introduction to polypropylene modification of asphalt concrete .. 136
6.2 Using polypropylene fibers to improve the fatigue life of asphalt concrete 138
6.3 Experiments used to enhance the physical and mechanical properties of polypropylene fiber-reinforced asphalt mixtures .. 139
6.4 Analysing the fatigue life of bituminous concrete 145
6.5 Analysing the repeated creep behaviour of bituminous concrete by utilising wet basis modification 152
6.6 Using artificial neural networks to predict physical and mechanical properties of polypropylene-modified dense bituminous mixtures .. 161

© Woodhead Publishing Limited, 2011
6.7 Determining the optimal polypropylene fiber modification of asphalt concrete utilising static creep tests, Marshall tests and fluorescence microscopy analyses
6.8 Conclusions
6.9 References

Part II Characterisation and properties

7 Rheology of polymer-modified bitumens
C. Gallegos and M. García-Morales, Universidad de Huelva, Spain
7.1 Introduction
7.2 Rheological characterisation of polymer-modified bitumen at in-service temperatures
7.3 Case studies
7.4 Conclusions and future trends
7.5 Sources of further information and advice
7.6 References

8 Factors affecting the rheology of polymer modified bitumen (PMB)
G. D. Airey, University of Nottingham, UK
8.1 Introduction
8.2 Polymer modification
8.3 Conventional physical property tests
8.4 Advanced rheological characterisation
8.5 Ageing
8.6 Asphalt mixture performance
8.7 Conclusions
8.8 Sources of further information and advice
8.9 References

9 Ageing of polymer modified bitumen (PMB)
J.-Y. Yu, Z.-G. Feng and H.-L. Zhang, Wuhan University of Technology, P. R. China
9.1 Introduction
9.2 Main causes of ageing for polymer modified bitumens (PMBs)
9.3 Simulative ageing methods of polymer modified bitumens (PMBs)
9.4 Ageing performance and characterization of polymer modified bitumens (PMBs)