Contents

Preface
- General v
- Layout of this guide v
- Acknowledgements v

Introduction
- Background to the Eurocode programme 1
- Status and field of application of Eurocodes 1
- National standards implementing Eurocodes 2
- Links between Eurocodes and product-harmonised technical specifications (ENs and ETAs) 2
- Additional information specific to EN 1993-1 2
- UK National Annex for EN 1993-1-1 3
- Reference 3

Chapter 1 General 5
1.1. Scope 5
1.2. Normative references 6
1.3. Assumptions 6
1.4. Distinction between Principles and Application Rules 6
1.5. Terms and definitions 5
1.6. Symbols 6
1.7. Conventions for member axes 6

Chapter 2 Basis of design 9
2.1. Requirements 9
2.2. Principles of limit state design 9
2.3. Basic variables 10
2.4. Verification by the partial factor method 10
2.5. Design assisted by testing 10
References 10

Chapter 3 Materials 11
3.1. General 11
3.2. Structural steel 11
3.3. Connecting devices 12
3.4. Other prefabricated products in buildings 12

Chapter 4 Durability 13
References 15

Chapter 5 Structural analysis 17
5.1. Structural modelling for analysis 17
5.2. Global analysis 18
5.3. Imperfections 21
5.4. Methods of analysis considering material non-linearities 21
5.5. Classification of cross-sections 22
Example 5.1: cross-section classification under combined bending and compression 28
5.6. Cross-section requirements for plastic global analysis 29
References 30
Chapter 6 Ultimate limit states
- General
- 6.2. Resistance of cross-sections
 - Example 6.1: tension resistance
 - Example 6.2: cross-section resistance in compression
 - Example 6.3: cross-section resistance in bending
 - Example 6.4: shear resistance
 - Example 6.5: cross-section resistance under combined bending and shear
 - Example 6.6: cross-section resistance under combined bending and compression
- 6.3. Buckling resistance of members
 - Example 6.7: buckling resistance of a compression member
 - Example 6.8: lateral torsional buckling resistance
 - Example 6.9: member resistance under combined major axis bending and axial compression
 - Example 6.10: member resistance under combined bi-axial bending and axial compression
- 6.4. Uniform built-up compression members

Chapter 7 Serviceability limit states
- General
- 7.2. Serviceability limit states for buildings
 - Example 7.1: vertical deflection of beams

Chapter 8 Annex A (informative) – Method 1: interaction factors k_{ij} for interaction formula in clause 6.3.3(4)

Chapter 9 Annex B (informative) – Method 2: interaction factors k_{ij} for interaction formula in clause 6.3.3(4)

Chapter 10 Annex AB (informative) – additional design provisions
- 10.1. Structural analysis taking account of material non-linearities
- 10.2. Simplified provisions for the design of continuous floor beams

Chapter 11 Annex BB (informative) – buckling of components of buildings structures
- 11.1. Flexural buckling of members in triangulated and lattice structures
- 11.2. Continuous restraints
- 11.3. Stable lengths of segment containing plastic hinges for out-of-plane buckling

Chapter 12 Design of joints
- Background
- 12.2. Introduction
- 12.3. Basis of design
- 12.4. Connections made with bolts, rivets or pins
- 12.5. Welded connections
- 12.6. Analysis, classification and modelling
- 12.7. Structural joints connecting H- or I-sections
- 12.8. Structural joints connecting hollow sections

Chapter 13 Cold-formed design
- 13.1. Introduction
- 13.2. Scope of Eurocode 3, Part 1.3