DAFX: Digital Audio Effects

Second Edition

Edited by

Udo Zölzer

Helmut Schmidt University – University of the Federal Armed Forces,
Hamburg, Germany

WILEY
A John Wiley and Sons, Ltd., Publication

Contents

Preface xiii

List of Contributors xv

1 Introduction 1

V. Verfaille, M. Holters and U. Zölzer

1.1 Digital audio effects DAFX with MATLAB® 1

1.2 Classifications of DAFX 3

1.2.1 Classification based on underlying techniques 5

1.2.2 Classification based on perceptual attributes 7

1.2.3 Interdisciplinary classification 14

1.3 Fundamentals of digital signal processing 20

1.3.1 Digital signals 20

1.3.2 Spectrum analysis of digital signals 23

1.3.3 Digital systems 33

1.4 Conclusion 42

References 43

2 Filters and delays 47

P. Dutilleux, M. Holters, S. Disch and U. Zölzer

2.1 Introduction 47

2.2 Basic filters 48

2.2.1 Filter classification in the frequency domain 48

2.2.2 Canonical filters 48

2.2.3 State variable filter 50

2.2.4 Normalization 51

2.2.5 Allpass-based filters 52

2.2.6 FIR filters 57

2.2.7 Convolution 60

2.3 Equalizers 61

2.3.1 Shelving filters 62

2.3.2 Peak filters 64

2.4 Time-varying filters 67

2.4.1 Wah-wah filter 67

2.4.2 Phaser 68

2.4.3 Time-varying equalizers 69
CONTENTS

2.5 Basic delay structures 70
2.5.1 FIR comb filter 70
2.5.2 IIR comb filter 71
2.5.3 Universal comb filter 72
2.5.4 Fractional delay lines 73
2.6 Delay-based audio effects 75
2.6.1 Vibrato 75
2.6.2 Flanger, chorus, slapback, echo 76
2.6.3 Multiband effects 78
2.6.4 Natural sounding comb filter 79
2.7 Conclusion 79
Sound and music 80
References 80

3 Modulators and demodulators 83
P. Dutilleux, M. Holters, S. Disch and U. Zölzer
3.1 Introduction 83
3.2 Modulators 83
3.2.1 Ring modulator 83
3.2.2 Amplitude modulator 84
3.2.3 Single-side-band modulator 86
3.2.4 Frequency and phase modulator 86
3.3 Demodulators 90
3.3.1 Detectors 90
3.3.2 Averagers 90
3.3.3 Amplitude scalers 91
3.3.4 Typical applications 91
3.4 Applications 92
3.4.1 Vibrato 92
3.4.2 Stereo phaser 92
3.4.3 Rotary loudspeaker effect 93
3.4.4 SSB effects 94
3.4.5 Simple morphing: amplitude following 94
3.4.6 Modulation vocoder 96
3.5 Conclusion 97
Sound and music 98
References 98

4 Nonlinear processing 101
P. Dutilleux, K. Dempwolf, M. Holters and U. Zölzer
4.1 Introduction 101
4.1.1 Basics of nonlinear modeling 103
4.2 Dynamic range control 106
4.2.1 Limiter 109
4.2.2 Compressor and expander 110
4.2.3 Noise gate 113
4.2.4 De-esser 115
4.2.5 Infinite limiters 115
4.3 Musical distortion and saturation effects 115
4.3.1 Valve simulation 115
4.3.2 Overdrive, distortion and fuzz 124
5 Spatial effects

V. Pohjola, T. Lokki and D. Rocchesso

5.1 Introduction 139

5.2 Concepts of spatial hearing

5.2.1 Head-related transfer functions 140
5.2.2 Perception of direction 140
5.2.3 Perception of the spatial extent of the sound source 141
5.2.4 Room effect 142
5.2.5 Perception of distance 142

5.3 Basic spatial effects for stereophonic loudspeaker and headphone playback

5.3.1 Amplitude panning in loudspeakers 143
5.3.2 Time and phase delays in loudspeaker playback 145
5.3.3 Listening to two-channel stereophonic material with headphones 147

5.4 Binaural techniques in spatial audio

5.4.1 Listening to binaural recordings with headphones 147
5.4.2 Modeling HRTF filters 148
5.4.3 HRTF processing for headphone listening 149
5.4.4 Virtual surround listening with headphones 150
5.4.5 Binaural techniques with cross-talk canceled loudspeakers 151

5.5 Spatial audio effects for multichannel loudspeaker layouts

5.5.1 Loudspeaker layouts 153
5.5.2 2-D loudspeaker setups 154
5.5.3 3-D loudspeaker setups 156
5.5.4 Coincident microphone techniques and Ambisonics 157
5.5.5 Synthesizing the width of virtual sources 159
5.5.6 Time delay-based systems 160
5.5.7 Time-frequency processing of spatial audio 161

5.6 Reverberation

5.6.1 Basics of room acoustics 164
5.6.2 Convolution with room impulse responses 164

5.7 Modeling of room acoustics

5.7.1 Classic reverb tools 166
5.7.2 Feedback delay networks 169
5.7.3 Time-variant reverberation 173
5.7.4 Modeling reverberation with a room geometry 173

5.8 Other spatial effects

5.8.1 Digital versions of classic reverb 175
5.8.2 Distance effects 176
5.8.3 Doppler effect 178

5.9 Conclusion 179

Acknowledgements 180

References 180
6 Time-segment processing 185
 P. Dutilleux, G. De Puli, A. von dem Knesebeck and U. Zölzer
6.1 Introduction 185
6.2 Variable speed replay 186
6.3 Time stretching 189
 6.3.1 Historical methods – Phonogene 198
 6.3.2 Synchronous overlap and add (SOLA) 191
 6.3.3 Pitch-synchronous overlap and add (PSOLA) 194
6.4 Pitch shifting 199
 6.4.1 Historical methods – Harmonizer 200
 6.4.2 Pitch shifting by time stretching and resampling 201
 6.4.3 Pitch shifting by delay-line modulation 203
 6.4.4 Pitch shifting by PSOLA and formant preservation 205
6.5 Time shuffling and granulation 210
 6.5.1 Time shuffling 210
 6.5.2 Granulation 211
6.6 Conclusion 215
Sound and music 215
References 215

7 Time-frequency processing 219
 D. Arfib, F. Keiler, U. Zölzer, V. Verfaille and J. Bonada
7.1 Introduction 219
7.2 Phase vocoder basics 219
 7.2.1 Filter bank summation model 221
 7.2.2 Block-by-block analysis/synthesis model 224
7.3 Phase vocoder implementations 226
 7.3.1 Filter bank approach 226
 7.3.2 Direct FFT/IFFT approach 232
 7.3.3 FFT analysis/sum of sinusoids approach 235
 7.3.4 Gabor approach 237
 7.3.5 Phase unwrapping and instantaneous frequency 241
7.4 Phase vocoder effects 243
 7.4.1 Time-frequency filtering 243
 7.4.2 Dispersion 247
 7.4.3 Time stretching 249
 7.4.4 Pitch shifting 258
 7.4.5 Stable/transient components separation 263
 7.4.6 Mutation between two sounds 265
 7.4.7 Robotization 268
 7.4.8 Whisperization 270
 7.4.9 Denosing 271
 7.4.10 Spectral panning 274
7.5 Conclusion 276
References 277

8 Source-filter processing 279
 D. Arfib, F. Keiler, U. Zölzer and V. Verfaille
8.1 Introduction 279
8.2 Source-filter separation 280
 8.2.1 Channel vocoder 281
 8.2.2 Linear predictive coding (LPC) 283
References 287