Zero Waste Engineering

M.M. Khan and M.R. Islam Dalhousie University Alberta, Canada

Contents

Pı	Preface			
1	Introduction			
	1.1	Background	1	
	1.2	The Deficiency of Current Engineering Practices	4	
	1.3		5	
	1.4	Scope of the Book	6	
	1.5	Organization of the Book	6	
2	A D	elinearized History of Time and Its Impact		
	on S	Scientific Cognition	11	
	2.1	Introduction	11	
	2.2	The Importance of the Continuous		
		Long-term History	13	
	2.3	Delinearized History of Time and Knowledge	17	
		2.3.1 A Discussion	28	
	2.4	A Reflection on the Purposes of Sciences	32	
	2.5	About the "New Science" of Time and Motion		
		2.5.1 Time-Conceptions, the Tangible-Intangible		
		Nexus, and the Social Role of Knowledge	34	
		2.5.2 More about Time: Newtonian		
		"Laws of Motion"—Versus Nature's	36	
		2.5.3 Science and the Problem of Linearized Time	42	
		2.5.4 Reproducibility and the Extinction of Time	44	
		2.5.5 The Long Term as an Infinite Summation		
		of "Short Terms" $T = \sum_{i=1}^{\infty} f_i(t)$	46	

vi Contents

3

	2.5.6	Erasing History in Order to	
		"Disappear" the Long-term and	
		Enshrine the Steady State	50
	2.5.7	First Interim "Time"-Ly Conclusion:	
		The Anti-Nature Essence of Linearized	
		Time	52
	2.5.8	Second Interim "Time"-Ly Conclusion:	
		Making Time Stand Still by Way of	
		Linearized Visualization of Space	53
2.6	What	is New Versus what is Permitted:	
	Science	ce and the Establishment?	55
	2.6.1	"Laws" of Motion, Natural "Law" &	
		Questions of Mutability	55
	2.6.2	Scientific Disinformation	62
2.7	The N	Jature-Science Approach	66
	2.7.1	The Origin-pathway Approach of	
		Nature-Science Versus the Input-output	
		Approach of Engineering	66
	2.7.2	Reference Frame and Dimensionality	67
	2.7.3	<u>.</u>	
		Phenomena of Only Partial Tangibility?	69
	2.7.4	Standardizing Criteria and the Intangible	
		Aspects of Tangible Phenomena	69
	2.7.5	Consequences of Nature-Science for	
		Classical Set Theory and Conventional	
		Notions of Mensuration	71
2.8	Concl	lusions	73
Т		Andalina of Zana Wasta Emainaguina	
		Nodeling of Zero Waste Engineering with Inherent Sustainability	77
3.1		duction	77
		lopment of a Sustainable Model	79
3.2	3.2.1	•	80
		Violation of Characteristic Time	85
3.3		rvation of Nature: Importance of Intangibles	86
3.4		ogy of Physical Phenomena	90
3.5		gible Cause to Tangible Consequence	91
0.0	milail	gible Cause to Taligible Collsequetice	71

Content	rs vii

	3.6	Removable Discontinuities: Phases and				
		Renewability of Materials	93			
	3.7	Rebalancing Mass and Energy	94			
	3.8	ENERGY: Existing Model	96			
		3.8.1 Supplements of Mass Balance Equation	96			
	3.9	Conclusions	99			
4	The Formulation of a Comprehensive Mass and					
	Ene	rgy Balance Equation	101			
	4.1	Introduction	101			
	4.2	The Law of Conservation of Mass and Energy	106			
	4.3	Avalanche Theory	107			
	4.4	O	112			
	4.5	Simultaneous Characterization of Matter				
		and Energy	114			
	4.6	A Discussion	117			
	4.7	Conclusions	121			
5	Colony Collapse Disorder (CCD): The Case					
	for a Science of Intangibles and Zero					
	Was	te Engineering	123			
	5.1	Introduction	123			
	5.2	The Need for the Science of Intangibles	125			
	5.3	The Need for Multidimensional Study				
	5.4	Assessing the Overall Performance				
		of a Process	136			
	5.5	Facts about Honey and the Science of				
		Intangibles	146			
	5.6	The Law of Conservation of Mass and				
		Energy	154			
	5.7	CCD In Relation to Science of Tangibles	160			
	5.8	Possible Causes of CCD	167			
		5.8.1 Genetically Engineered Crops	167			
		5.8.2 "Foreign Elements"	169			
		5.8.3 Electromagnetic Irradiation	171			
		5.8.4 Israeli Acute Paralysis Virus (IAPV)	173			
	5.9	Nature Science Approach and Discussion	173			

viii Contents

	5.10	A New Approach to Product Characterization	17ϵ
	5.11	A Discussion	179
	5.12	Conclusions	182
6	Zero	Waste Lifestyle with Inherently Sustainable	
		nologies	18
	6.1	Introduction	185
	6.2	Energy from Kitchen Waste and Sewage	189
		6.2.1 Estimation of the Biogas and Ammonia	
		Production	19
	6.3	Utilization of Produced Waste in a	
		Desalination Plant	192
	6.4	Solar Aquatic Process to Purify	
		Desalinated/Waste Water	199
		6.4.1 Process Description	199
		6.4.2 Utilization of Biogas in Fuel Cell	203
	6.5	Direct Use of Solar Energy	205
		6.5.1 Space Heating	207
		6.5.2 Water Heating	208
		6.5.3 Refrigeration and Air Cooling	209
		6.5.4 Solar Stirling Engine	210
	6.6	Sustainability Analysis	211
	6.6	Conclusions	215
7	A N	ovel Sustainable Combined Heating/	
	Cool	ing/Refrigeration System	21
	7.1	Introduction	217
	7.2	Einstein Refrigeration Cycle	220
	7.3	Thermodynamic Model and the Energy	
		Requirement of the Cycle	22
	7.4	Solar Cooler and Heat Engine	226
	7.5	Actual Coefficient of Performance (COP) Calculation	226
		7.5.1 Vapor Compression Cycle	
		Refrigeration System	228
	7.6	Absorption Refrigeration System	230
	7.7	Calculation of Global Efficiency	232
		7.7.1 Heat Transfer Efficiency	233
		7.7.2 Turbine Efficiency	233

CONTENTS	12
CONTENTS	- 12

		7.7.3	Generator Efficiency	234
		7.7.4	Transmission Efficiency	234
		7.7.5	Compressor Efficiency	234
		7.7.6	Global Efficiency	235
		7.7.7	Fossil Fuel Combustion Efficiency	236
		7.7.8	Solar Energy	237
			Transmission Efficiency	237
	7.8	Solar I	Energy Utilization in the	
		Refrig	eration Cycle	239
	7.9	The N	ew System	240
	7.10	Pathw	ay Analysis	241
		7.10.1	Environmental Pollution Observation	242
		7.10.2	Fuel Collection Stage	243
		7.10.3	Combustion Stage	243
		7.10.4	Transmission Stage	244
		7.10.5	Environmentally Friendly System	245
		7.10.6	Global Economics of the Systems	245
		7.10.7	Quality of Energy	246
	7.11	Sustai	nability Analysis	246
	7.12	Concl	usions	249
8	ΑZ	ero Was	ste Design for Direct Usage of Solar Energy	251
	8.1	Introd	uction	251
	8.2	The Pr	rototype	255
		8.2.1	The Infrastructure	255
		8.2.2	Fluid Flow Process	259
		8.2.3	Solar Tracking Process	260
	8.3	Result	s and Discussion of Parabolic Solar Technology	260
	8.4	Concl	usions	268
9	Inve	stigati	on of Vegetable Oil as the Thermal	
	Flui	d in a I	Parabolic Solar Collector	269
	9.1	Introd	uction	269
	9.2	Exper	imental Setup and Procedures	273
		9.2.1	Parabolic Solar Collector Assembly	273
		9.2.2	Solar Pump and PV Solar Panel	275
		9.2.3	Solar Heat Transfer Fluid (Thermal Fluid)	277
		9.3.2	Experimental Procedure	277

x Contents

	9.4	Results and Discussion	278		
	9.5	Conclusions	281		
10	The	Potential of Biogas in the Zero Waste			
	Mode in the Cold-Climate Environment				
	10.1	Introduction	283		
	10.2	Background	284		
	10.3	Biogas Fermentation	285		
	10.4	Factors Involved in Anaerobic Digestion	288		
	10.5	Heath and Environmental Issue	291		
	10.6	Digester in Cold Countries	293		
	10.7	Experimental Setup and Procedures	294		
		10.7.1 Experimental Apparatus	294		
		10.7.2 Experimental Procedure	296		
	10.8	Discussion	298		
	10.9	Conclusions	303		
11 The New Synthesis: Application of All Natural					
		erials for Engineering Applications	305		
	11.1	Introduction	305		
	11.2	Metal Waste Removal with Natural Materials	306		
		11.2.1 Natural Adsorbent	306		
	11.3	Natural Materials as Bonding Agents	312		
		11.3.1 Toxic and Hazardous Properties of			
		Adhesives	314		
		11.3.2 Sustainable Technology for Adhesive			
		Preparation	318		
		11.3.3 Materials and Methods	320		
		11.3.4 Formulation of Adhesives	322		
		11.3.5 Testing Media	323		
		11.3.6 Testing Method and Standards	324		
		11.3.7 Results and Discussion	325		
	11.4	Selection of Adhesives	328		
		11.4.2 Application of the Adhesives	331		
	11.5	Conclusions	338		
12	Sust	ainability of Nuclear Energy	341		
	12.1 Summary				
	12.2 Introduction				

	12.3	Energy Demand in Emerging Economies				
		and Nuclear Power				
	12.4	Nuclear Energy Options	346			
	12.5	Status of Global Nuclear Energy Development	347			
	12.6	2,				
	12.7	Global Estimated Uranium Resources	352			
	12.8	Nuclear Reactor Technologies	353			
	12.9	Sustainability of Nuclear Energy	354			
		12.9.1 Environmental Sustainability of				
		Nuclear Energy	35			
		12.9.2 Cooling Water Discharge	35			
		12.9.3 Nuclear Radiation Hazard	352			
		12.9.4 Nuclear Wastes	35			
		12.9.5 Social Sustainability of Nuclear Energy	360			
		12.9.6 Economic Sustainability of Nuclear Energy	363			
	12.10	Nuclear Energy and Global Warming	366			
	12.11	Global Efficiency of Nuclear Energy	368			
	12.12	Energy from Nuclear Fusion	369			
	12.13	Some Considerations	370			
	12.14	Conclusions	372			
13	High	Temperature Reactors for Hydrogen Production	37			
	13.1	Summary	375			
	13.2	Introduction	376			
	13.3	IS Process	378			
	13.4	Solar Energy for High Temperature Reactor	380			
	13.5	Sustainability of the Process	383			
	13.6	Conclusions	385			
14	Econo	omic Assessment of Zero Waste Engineering	38			
	14.1	Introduction	387			
	14.2	Delinearized history of Modern Age	388			
	14.3	Insufficiency of Conventional Economics Models	398			
	14.4	The New Synthesis	401			
	14.5	The New Investment Model, Conforming to				
		the Information Age	403			
	14.6	Economics of Zero Waste Engineering Projects	409			
		14.6.1 Biogas Plant	41			
		14.6.2 Solar Parabolic Trough	414			

xii Contents

		14.6.3	A New Approach to Energy	
			Characterization	416
		14.6.4	Global Economics	419
		14.6.5	Environmental and Ecological Impact	420
		14.6.4	Quality of Energy	420
		14.6.5	Evaluation of Process	421
	14.7	Concl	usions	423
15	Conc	lusions	and Recommendations	425
	15.1	Conch	usions	425
Re	feren	ces		429
Inc	dex			459