DESIGNERS' GUIDES TO THE EUROCODES

DESIGNERS' GUIDE TO EUROCODE 8:
DESIGN OF STRUCTURES FOR EARTHQUAKE RESISTANCE

DESIGNERS' GUIDE TO EN 1998-1 AND EN 1998-5
EUROCODE 8: DESIGN OF STRUCTURES FOR EARTHQUAKE RESISTANCE GENERAL RULES, SEISMIC ACTIONS, DESIGN RULES FOR BUILDINGS AND RETAINING STRUCTURES

M. FARDIS, E. CARVALHO, A. ELNASHAI, E. FACCIOLI, P. PINTO
and A. PLUMIER

Series editor
H. Gulvanessian
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim of this guide</td>
<td>v</td>
</tr>
<tr>
<td>Layout of this guide</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1. Scope of Eurocode 8
1.2. Scope of Eurocode 8 - Part 1
1.3. Scope of Eurocode 8 - Part 5
1.4. Use of Eurocode 8 - Parts 1 and 5 with the other Eurocodes
1.5. Assumptions - distinction between Principles and Application Rules
1.6. Terms and definitions - symbols

Chapter 2 Performance requirements and compliance criteria

2.1. Performance requirements for new designs in Eurocode 8 and associated seismic hazard levels
2.2. Compliance criteria for the performance requirements and their implementation
 - 2.2.1. Compliance criteria for damage limitation
 - 2.2.2. Compliance criteria for the no-(local-)collapse requirement
2.3. Exemption from the application of Eurocode 8

Chapter 3 Seismic actions

3.1. Ground conditions
 - 3.1.1. Identification of ground types
3.2. Seismic action
 - 3.2.1. Seismic zones
 - 3.2.2. Basic representation of the seismic action
 - 3.2.3. Alternative representations of the seismic action
3.3. Displacement response spectra

Chapter 4 Design of buildings

4.1. Scope
4.2. Conception of structures for earthquake resistant buildings
 - 4.2.1. Structural simplicity
4.2. Uniformity, symmetry and redundancy
4.3. Bi-directional resistance and stiffness
4.4. Torsional resistance and stiffness
4.5. Diaphragmatic behaviour at the storey level
4.6. Adequate foundation

4.3. Structural regularity and its implications for design
4.3.1. Introduction
4.3.2. Regularity in plan
4.3.3. Regularity in elevation

4.4. Combination of gravity loads and other actions with the design seismic action
4.4.1. Combination for local effects
4.4.2. Combination for global effects

4.5. Methods of analysis
4.5.1. Overview of the menu of analysis methods
4.5.2. The lateral force method of analysis
4.5.3. Modal response spectrum analysis
4.5.4. Linear analysis for the vertical component of the seismic action
4.5.5. Non-linear methods of analysis

4.6. Modelling of buildings for linear analysis
4.6.1. Introduction: the level of discretization
4.6.2. Modelling of beams, columns and bracings
4.6.3. Special modelling considerations for walls
4.6.4. Cracked stiffness in concrete and masonry
4.6.5. Accounting for second-order (P-Δ) effects

4.7. Modelling of buildings for non-linear analysis
4.7.1. General requirements for non-linear modelling
4.7.2. Special modelling requirements for non-linear dynamic analysis
4.7.3. The inadequacy of member models in 3D as a limitation of non-linear modelling

4.8. Analysis for accidental torsional effects
4.8.1. Accidental eccentricity
4.8.2. Estimation of the effects of accidental eccentricity through static analysis
4.8.3. Simplified estimation of the effects of accidental eccentricity

4.9. Combination of the effects of the components of the seismic action
4.10. ‘Primary’ versus ‘secondary’ seismic elements
4.10.1. Definition and role of ‘primary’ and ‘secondary’ seismic elements
4.10.2. Special requirements for the design of secondary seismic elements

4.11. Verification
4.11.1. Verification for damage limitation
4.11.2. Verification for the no-(local)-collapse requirement

4.12. Special rules for frame systems with masonry infills
4.12.1. Introduction and scope
4.12.2. Design against the adverse effects of planwise irregular infills
4.12.3. Design against the adverse effects of heightwise irregular infills
Chapter 5 Design and detailing rules for concrete buildings 85
5.1. Scope 85
5.2. Types of concrete elements -- definition of 'critical regions' 86
5.2.1. Beams and columns 86
5.2.2. Walls 86
5.2.3. Ductile walls: coupled and uncoupled 87
5.2.4. Large lightly reinforced walls 88
5.2.5. Critical regions in ductile elements 89
5.3. Types of structural systems for earthquake resistance of concrete buildings 89
5.3.1. Inverted-pendulum systems 90
5.3.2. Torsionally flexible systems 90
5.3.3. Frame systems 90
5.3.4. Wall systems 91
5.3.5. Dual systems 91
5.3.6. Systems of large lightly reinforced walls 91
5.4. Design concepts: design for strength or for ductility and energy dissipation -- ductility classes 92
5.5. Behaviour factor \(q \) of concrete buildings designed for energy dissipation 93
5.6. Design strategy for energy dissipation 95
5.6.1. Global and local ductility through capacity design and member detailing: overview 95
5.6.2. Implementation of capacity design of concrete frames against plastic hinging in columns 96
5.6.3. Detailing of plastic hinge regions for flexural ductility 101
5.6.4. Capacity design of members against pre-emptive shear failure 105
5.7. Detailing rules for the local ductility of concrete members 111
5.7.1. Introduction 111
5.7.2. Minimum longitudinal reinforcement in beams 111
5.7.3. Maximum longitudinal reinforcement ratio in the critical regions of beams 112
5.7.4. Maximum diameter of longitudinal beam bars crossing beam-column joints 113
5.7.5. Verification of beam-column joints in shear 116
5.7.6. Dimensioning of shear reinforcement in critical regions of beams and columns 120
5.7.7. Confinement reinforcement in the critical regions of columns and ductile walls 123
5.7.8. Boundary elements at section ends in the critical region of ductile walls 127
5.7.9. Shear verification in the critical region of ductile walls 127
5.7.10. Minimum clamping reinforcement across construction joints in walls of DCH 130
5.8. Special rules for large walls in structural systems of large lightly reinforced walls 131
5.8.1. Introduction 131
5.8.2. Dimensioning for the ULS in bending with axial force 131
5.8.3. Dimensioning for the ULS in shear 132
5.8.4. Detailing of the reinforcement 134
5.9. Special rules for concrete systems with masonry or concrete infills 135
5.10. Design and detailing of foundation elements 138
7.6. Properties of composite sections for analysis of structures and for resistance checks
 7.6.1. Difficulties in selecting mechanical properties for design and analysis 172
 7.6.2. Stiffness of composite sections 172
 7.6.3. Effective width of slabs 173
7.7. Composite connections in dissipative zones 173
7.8. Rules for members 174
7.9. Design of columns 175
 7.9.1. Design options 175
 7.9.2. Non-dissipative composite columns 175
 7.9.3. Dissipative composite columns 176
 7.9.4. Composite columns considered as steel columns in the model used for analysis 176
7.10. Steel beams composite with a slab 177
 7.10.1. Ductility condition for steel beams with a slab under a sagging (positive) moment 177
 7.10.2. Ductility condition for steel beams with a slab under a hogging (negative) moment 177
 7.10.3. Seismic reinforcement in the concrete slab in moment-resisting frames 178
7.11. Design and detailing rules for moment frames 179
 7.11.1. General 179
 7.11.2. Analysis and design rules for beams, columns and connections 180
 7.11.3. Disregarding the composite character of beams with a slab 180
 7.11.4. Limitation of overstrength 181
7.12. Composite concentrically braced frames 181
7.13. Composite eccentrically braced frames 181
 7.14.2. Analysis and design rules for beams and columns 182
7.15. Composite or concrete shear walls coupled by steel or composite beams 183
7.16. Composite steel plate shear walls 184

Chapter 8 Design and detailing rules for timber buildings 185
8.1. Scope 185
8.2. General concepts in earthquake resistant timber buildings 185
8.3. Materials and properties of dissipative zones 187
8.4. Ductility classes and behaviour factors 187
8.5. Detailing 189
8.6. Safety verifications 189

Chapter 9 Seismic design with base isolation 191
9.1. Introduction 191
9.2. Dynamics of seismic isolation 197
9.3. Design criteria 201
9.4. Seismic isolation systems and devices 201
 9.4.1. Isolators 202
 9.4.2. Supplementary devices 203
9.5. Modelling and analysis procedures 204
9.6. Safety criteria and verifications 206
9.7. Design seismic action effects on fixed-base and isolated buildings 207

Chapter 10 Foundations, retaining structures and geotechnical aspects 209
10.1. Introduction 209
10.1.2. Relationship between EN 1998-5 and EN 1997-1 209
(Eurocode 7: Geotechnical design. Part 1: General rules)
10.2. Seismic action 212
10.2.2. Topographic amplification factor 213
10.2.3. 'Artificial' versus recorded time-history representations 213
10.3. Ground properties 215
10.3.1. Strength parameters 215
10.3.2. Partial factors for material properties 217
10.3.3. Stiffness and damping parameters 217
10.4. Requirements for siting and for foundation soils 218
10.4.1. Siting 218
Example 10.1: calculation of seismically induced displacements in a real landslide 221
Example 10.2: liquefaction hazard evaluation 228
10.4.2. Ground investigations and studies 231
10.4.3. Ground type identification for the determination of the design seismic action 231
Example 10.3: ground-type identification at an actual construction site 233
Example 10.4: a further case of ground-type identification at an actual site 234
10.5. Foundation system 236
10.5.1. General requirements - seismically induced ground deformation 236
10.5.2. Rules for conceptual design 236
10.5.3. Transfer of action effects to the ground 237
10.5.4. ULS verifications for shallow or embedded foundations 238
Example 10.5: verification of the footing of a viaduct pier against bearing capacity failure 238
Example 10.6: non-linear dynamic analyses of a simple soil-footing model 240
10.5.5. Piles and piers 246
10.6. Soil-structure interaction 250
10.7. Earth-retaining structures 250
10.7.1. General design considerations 250
10.7.2. Basic models 251
10.7.3. Seismic action 252
10.7.4. Design earth and water pressure 252
Example 10.7: simplified seismic analysis of a flexible earth-retaining structure with the pseudo-static approach 253
Example 10.8: non-linear dynamic analysis of the flexible retaining structure of Example 10.7 subjected to earthquake excitation 259

References 265

Index 273