Modern Communications
Receiver Design and Technology

Cornell Drentea
Contents

Foreword \hspace{1cm} xiii
Preface \hspace{1cm} xv
Acknowledgments \hspace{1cm} xix
Introduction \hspace{1cm} xxi

CHAPTER 1
Introduction to Receivers \hspace{1cm} 1

CHAPTER 2
The History of Radio \hspace{1cm} 5
2.1 The Coherer \hspace{1cm} 5
2.2 The First Radio Receiver \hspace{1cm} 5
2.3 The Decoherer (Practical Coherer/Decoherer Receivers) \hspace{1cm} 6
2.4 Galena Crystal Discovery, the Fleming Valve, and the Audion \hspace{1cm} 6
2.5 The Audion and the Regenerative Receiver \hspace{1cm} 7
2.6 The Audion and the Local Oscillator \hspace{1cm} 9
2.7 The Audion and the Tuned Radio Frequency (TRF) Receiver \hspace{1cm} 9
2.8 Early Progress in Radio Receivers \hspace{1cm} 10
Reference \hspace{1cm} 11

CHAPTER 3
The Superheterodyne Receiver \hspace{1cm} 13
3.1 Single Conversions \hspace{1cm} 13
3.2 Multiple Conversions \hspace{1cm} 14
3.3 Direct Conversion (Zero IF) \hspace{1cm} 14

CHAPTER 4
Implementing Single Conversion Superheterodynes \hspace{1cm} 15
4.1 The Image Problem \hspace{1cm} 20
4.2 Upconverting—The Rule of 35% \hspace{1cm} 24
4.3 Selectivity and IF Filters \hspace{1cm} 27
4.4 Defining Baseband and Broadband: The Concept of Percentage Bandwidth \hspace{1cm} 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 Percentage Bandwidth and Filter Design</td>
<td>32</td>
</tr>
<tr>
<td>4.6 The Seven-Layer ISO-OSI Model</td>
<td>32</td>
</tr>
<tr>
<td>4.7 IF Filters, an Introduction—History of Filter Design</td>
<td>35</td>
</tr>
<tr>
<td>4.8 Elements of Modern Filter Design</td>
<td>39</td>
</tr>
<tr>
<td>4.9 Passband, Bandwidth, and Stopband</td>
<td>41</td>
</tr>
<tr>
<td>4.10 Shape Factor</td>
<td>43</td>
</tr>
<tr>
<td>4.11 Center Frequency and Nominal Center Frequency</td>
<td>44</td>
</tr>
<tr>
<td>4.12 Attenuation and Insertion Loss</td>
<td>45</td>
</tr>
<tr>
<td>4.13 Ultimate Rejection</td>
<td>45</td>
</tr>
<tr>
<td>4.14 Ripple and Passband Ripple</td>
<td>46</td>
</tr>
<tr>
<td>4.15 Spurious Response</td>
<td>47</td>
</tr>
<tr>
<td>4.16 Linearity</td>
<td>47</td>
</tr>
<tr>
<td>4.17 Intermodulation Distortion (IMD) in IF Filters</td>
<td>47</td>
</tr>
<tr>
<td>4.18 Power Handling Capability</td>
<td>48</td>
</tr>
<tr>
<td>4.19 Settling Time and Rise Time in Filters</td>
<td>49</td>
</tr>
<tr>
<td>4.20 Phase Delay and Group Delay Distortion</td>
<td>49</td>
</tr>
<tr>
<td>4.21 Impedance</td>
<td>51</td>
</tr>
<tr>
<td>4.22 Vibration-Induced Sidebands</td>
<td>51</td>
</tr>
<tr>
<td>4.23 Modern Filter Approximations</td>
<td>52</td>
</tr>
<tr>
<td>4.24 Bessel or Linear Phase</td>
<td>52</td>
</tr>
<tr>
<td>4.25 Butterworth</td>
<td>52</td>
</tr>
<tr>
<td>4.26 Chebyshev</td>
<td>53</td>
</tr>
<tr>
<td>4.27 Cauer-Elliptic</td>
<td>53</td>
</tr>
<tr>
<td>4.28 Gaussian</td>
<td>53</td>
</tr>
<tr>
<td>4.29 Synchronously Tuned</td>
<td>54</td>
</tr>
<tr>
<td>4.30 IF Filter Technologies</td>
<td>54</td>
</tr>
<tr>
<td>4.31 Mechanical Filters</td>
<td>54</td>
</tr>
<tr>
<td>4.32 Quartz Crystal Filters</td>
<td>57</td>
</tr>
<tr>
<td>4.33 Temperature Stability in Quartz Crystal Filters</td>
<td>63</td>
</tr>
<tr>
<td>4.34 Designing High Performance Quartz IF Filters</td>
<td>63</td>
</tr>
<tr>
<td>4.35 Monolithic Crystal Filters (MCF)</td>
<td>67</td>
</tr>
<tr>
<td>4.36 The Tandem Monolithic</td>
<td>70</td>
</tr>
<tr>
<td>4.37 Ceramic Filters</td>
<td>70</td>
</tr>
<tr>
<td>4.38 Surface Acoustic Wave (SAW) and Bulk Acoustic Wave (BAW) Filters</td>
<td>71</td>
</tr>
<tr>
<td>4.39 Technological Trade-Offs in Intermediate Frequency (IF) Filters</td>
<td>74</td>
</tr>
<tr>
<td>References</td>
<td>75</td>
</tr>
<tr>
<td>Selected Bibliography</td>
<td>75</td>
</tr>
</tbody>
</table>

CHAPTER 5
Implementing Double Conversions

CHAPTER 6
Implementing Multiple Conversions

CHAPTER 7
Implementing Direct Conversions

7.1 Image Reject Mixers
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Hartley Architecture</td>
<td>86</td>
</tr>
<tr>
<td>7.3 Weaver Architecture</td>
<td>87</td>
</tr>
<tr>
<td>7.4 Self-Calibrating Architecture</td>
<td>88</td>
</tr>
<tr>
<td>7.5 Image Reject Mixer with Sign-Sign Least Mean Square (SS-LMS)</td>
<td>90</td>
</tr>
<tr>
<td>Calibration Method</td>
<td></td>
</tr>
<tr>
<td>7.6 Image Reject Mixers Conclusions</td>
<td>90</td>
</tr>
<tr>
<td>7.7 Image Recovery Receivers</td>
<td>92</td>
</tr>
<tr>
<td>Reference</td>
<td>93</td>
</tr>
<tr>
<td>Selected Bibliography</td>
<td>93</td>
</tr>
</tbody>
</table>

CHAPTER 8

Special Conversions and Their Implementation 99

CHAPTER 9

Drift-Canceling Loops and the Barlow-Wadley Receiver 101

CHAPTER 10

High Probability of Intercept (HPOI) and the Ideal Receiver 105

Selected Bibliography 108

CHAPTER 11

The Role of the Receiver in a Communications Link 109

Reference 118

Selected Bibliography 118

CHAPTER 12

System Design Considerations for Modern Receivers 121

12.1 Introduction 121

12.2 Understanding Intermodulation Distortion Products 121

12.3 Predicting Receiver System Spurious Performance: Design Tools for Predicting Intermodulation Distortion 123

12.3.1 Product Charts and Their Use—The Intermodulation Distortion Web Analysis Tool 123

12.4 System Analysis for a General Coverage Communication Receiver—A Design Case 130

Selected Bibliography 136

CHAPTER 13

Dynamic Range 137

13.1 Definitions: The Five Types of Dynamic Range 137

13.1.1 Single-Tone Dynamic Range 137

13.1.2 Two-Tone Dynamic Range 138

13.2 Determining Noise Figure Requirements 140

13.3 Sensitivity 142

13.4 Design Considerations for the Front End—Composite Noise Figure 143
13.5 Understanding the Third-Order Intercept Point Spurious-Free Dynamic Range (IP3SFDR) 143
13.6 Simulating and Measuring Composite Linear Dynamic Range for an HWI Receiver 148
 References 153
 Selected Bibliography 153

CHAPTER 14
High-Performance Receiver Front-End Design Example 157
14.1 Designing a Front End for an HF Receiver/Transceiver 157
14.2 Practical Preselector Design: Automatically Switched Half-Octave Filter Banks—A Design Case 165
14.3 Switching Mechanisms of Front-End Filters for Best Dynamic Range Performance 168
14.4 Automatically Switched Half-Octave Filters Design 169
 References 173
 Selected Bibliography 174

CHAPTER 15
Mixers 175
15.1 The Mathematics of Mixers, Laplace, and Fourier Transforms 175
15.2 Mixer Topologies 177
15.3 The Single-Balanced Mixer 178
15.4 The Double-Balanced Mixer and Its Performance Characteristics 178
15.5 Terminating Mixers and the Diplexer 182
15.6 AM Noise Suppression and Phase Noise Impacts on Transferring Signals in Mixers 182
15.7 Conversion Loss and Noise Figure of Diode Mixers 183
15.8 Two-Tone Intermodulation Performance in Mixers 184
15.9 Compression Point (−1 dB) in Mixers 185
15.10 Desensitization Level and Isolation 185
15.11 Commutative Mixers, FET, and H-Mode Mixers 186
15.12 Integrated Circuit Mixers—Gilbert Cell Mixers 188
15.13 Image-Reject Mixers 190
15.14 Image Recovery Mixers 190
15.15 Mixer Technology Conclusions 191
 Reference 191
 Selected Bibliography 191

CHAPTER 16
Frequency Synthesizers 193
16.1 Introduction 193
16.2 Definitions 193
 16.2.1 Leeson Oscillator Noise Model 193
16.3 Long-Term and Short-Term Frequency Stability 194
16.4 Residual Phase Noise and Absolute Phase Noise 196
16.5 Allan Variance 197
16.6 Phase Noise and Jitter Concepts
16.7 Defining Coherency in Synthesizers
16.8 Open Loop Systems: Mixing VFOs with Crystal Oscillators
16.9 Synthesizer Forms and Classifications: Brute Force, Direct and Indirect, and Nonbrute Force, Direct and Indirect
 16.9.1 Brute Force
 16.9.2 Nonbrute Force
16.10 The Mixer as a Synthesizer
16.11 Digital and Analog Regenerative Dividers
16.12 Harmonic Multipliers
16.13 Single-Loop Integer Phase-Locked Loop (PLL)
16.14 Multiple-Loop, Phase-Locked Loop (PLL)
16.15 Digital Counter/Comparator and Digiphase Synthesizer
16.16 Fractional-N and Dual-Modulus Divider Phase-Locked Loop (PLL)
16.17 The Mixer Phase-Locked Loop (PLL)
16.18 Direct Digital Synthesizer (DDS)-Driven PLL
16.19 Foster Seeley and Digital Frequency Discriminators
16.20 Phase-Locked Loop (PLL) Key Components
 16.20.1 Master Reference Oscillator/Unit (MRU) Technology
 Classifications: Quartz (TCXO, OCXO, MCXO), SAW, Photonic, Rubidium, and Caesium (Cesium) Hydrogen Maser
16.21 Designing a High-Performance MRU for an HPOI Receiver
 16.21.1 Photonic Master Reference Unit (MRU)
 16.21.2 Hydrogen Maser, Caesium (Cesium), and Rubidium Master Reference Units (MRUs)
16.22 Phase Detectors
16.23 Amplifier/Loop Filter Trade-Offs
16.24 Voltage Controlled Oscillator (VCO)
16.25 Modeling Phase Delays in Phase-Locked Loops
16.26 Designing a DDS-Driven PLL Synthesizer for the Upconvert, Double Conversion HPOI Receiver
16.27 Performance of the DDS-Driven PLL
16.28 The Opto-Encoder and Its Application
16.29 Key Rules in Designing PLLs
16.30 Problems: Design a Synthesized Receiver System for the FM Broadcast Band
16.31 Final Concluding Notes to Synthesizers
16.32 Additive Noise in PLL Design
 References
 Selected Bibliography

CHAPTER 17
Intermediate Frequency (IF) Receivers
17.1 Switched and Cascaded IF Filters
17.2 Implementing a High-Performance IF in the Star-10 Receiver
17.3 Logarithmic IFs
17.4 Using Logarithmic Amplifiers in Low-Cost High-Performance ASK Data Receivers 314
17.5 Variable Passband Filters and Analog IFs 316
17.6 Noise Blankers 316
17.7 The Variable Pulse Noise Blanker and the Star-10 Receiver Noise Blanker 317
17.8 The Notch Filter and the Bandpass Tuning Mechanism 318

References 322
Selected Bibliography 323

CHAPTER 18
Automatic Gain Control (AGC) 325
18.1 Introduction 325
18.2 Linear Control Systems—Feedback Systems and Their Significance in Receivers 325
18.3 Achieving High Dynamic Range with AGC: The Concept of Composite Dynamic Range 325
18.4 Deriving and Applying AGC in Receivers 327
18.5 Understanding and Using Logarithmic Detectors 331
18.6 Square-Law Detectors 332
18.7 True-RMS Detectors 332
18.8 Attack and Release Time, Hanged AGC, and the Star-10 AGC System 333
18.9 Audio-Derived AGC 334
18.10 The PIN Diode Attenuator Used for AGC 334
18.11 Digital AGCs 334
18.12 Other Considerations for AGC Detectors 336
References 338
Selected Bibliography 339

CHAPTER 19
Product Detectors and Beat Frequency Oscillators (BFO) 343
19.1 I and Q Demodulation Process: The Concept of Demodulation 344
19.2 Other Demodulation Techniques 345
19.3 The Star-10 Receiver Product Detector 345
References 350
Selected Bibliography 350

CHAPTER 20
Audio and Baseband Amplifier Design Considerations 351
Selected Bibliography 355

CHAPTER 21
The Power Supply 357
Selected Bibliography 359
Contents

CHAPTER 22
Putting It All Together 361
22.1 Packaging and Mechanical Considerations 363

CHAPTER 23
Radio Astronomy and the Search for Extraterrestrial Intelligence (SETI) Receivers 367

CHAPTER 24
Digital Signal Processing (DSP) and Software-Defined Radio (SDR) 375
24.1 Introduction 375
24.2 Time-Domain and Frequency-Domain Representation of Discrete Time Signals 376
24.3 Baseband Sampling Theory 378
24.4 Bandpass Sampling Theory 379
24.5 Analog-to-Digital (A/D) Conversion 382
24.6 Successive Approximation A/D 383
24.7 Dual-Slope A/D 383
24.8 Flash A/D 383
24.9 Delta-Sigma (ΔΣ) Modulator A/D 384
24.10 Delta-Sigma, Quantizing, and Noise Shaping 385
24.11 Digital-to-Analog (D/A) Conversion 385
24.12 Staircase Reconstruction 388
24.13 Bit Stream D/A 388
24.14 The Fourier Transform 390
24.15 Discrete and Fast Fourier Transforms 390
24.16 Digital Filters 391
24.17 Infinite Impulse Response (IIR) Filters 392
24.18 Finite Impulse Response (FIR) Filters 392
24.19 Smoothing Windows—Hanning/Hamming, Blackman, and Kaiser Bessel 393
24.20 Phase Noise and Jitter Considerations: Choosing Offsets in Bandpass Digital Signal Processing 395
24.21 Practical Software-Defined Radios (SDR) 395
24.22 The ADAT Software-Defined Radio 397
24.23 Other Software-Defined Radios (SDR) 404
24.24 Defining Software-Defined Radios (SDR) 404
24.25 Cognitive Radio 413
24.26 Conclusions 414
References 417
Selected Bibliography 417

CHAPTER 25
Electronic Warfare (EW) Receivers 423
25.1 Probability of Intercept (POI) 424
25.2 Crystal Video Receiver 426
25.3 The Compressive (Microscan) Receiver
25.4 Instantaneous Frequency Measurement (IFM) Receiver and Digital Instantaneous Frequency Measurement Receiver (DIFM)
25.5 Phase Detection in Interferometer Receivers
25.6 Wideband Swept Superheterodyne Receivers
25.7 Narrowband Swept Superheterodyne Receivers
25.8 Channelized Bulk Filter (Cued) Receiver
25.9 The Bragg Cell or Acousto-Optic Receiver and Ultrawideband Instantaneous IFs
25.10 Conclusions

References
Selected Bibliography

CHAPTER 26
Conclusions

About the Author

Index