Condition Indicators for the Assessment of Local and Spatial Deterioration of Concrete Structures

Vasiliki Malioka

Institute of Structural Engineering
Swiss Federal Institute of Technology, ETH Zurich

Zurich, December 2009
3.3.3. Alcali-silica reaction

3.3.4. The corrosion process

3.3.4.1. Chloride penetration

3.3.4.2. Carbonation

3.4. Parameters influencing corrosion

3.4.1. Design and execution phase parameters

3.4.1.1. Concrete cover depth

3.4.1.2. Water/cement (w/c) ratio

3.4.1.3. Cement content and type

3.4.1.4. Curing and compaction

3.4.2. Environmental parameters

3.5. Critical structural states

3.5.1. Critical corrosion states

4. PROBABILISTIC MODELLING OF DETERIORATION

4.1. Introduction

4.2. Modelling of deterioration phases

4.3. The DuraCrete project-A state of the art

4.4. Classification of structures

4.5. Quantitative modelling of chloride induced corrosion initiation

4.5.1 Simplified model

4.5.1.1 Assumption 1: Exclusion of chlorides in the concrete mix

4.5.1.2 Assumption 2: Homogeneous concrete surface

4.5.1.3 Assumption 3: Time independent diffusion coefficient

4.5.1.4 Assumption 4: Constant surface chloride concentration

4.5.1.5 Statistical quantification of the parameters in the simplified model

4.5.2 The DuraCrete proposed model

4.5.2.1 Concrete cover depth

4.5.2.2 Diffusion coefficient

4.5.2.3 Environmental variable

4.5.2.4 Execution variable

4.5.2.5 Test variable

4.5.2.6 Age factor

4.5.2.7 Surface chloride concentration

4.5.2.8 Critical chloride concentration

4.5.2.9 Reference period

4.6. Quantitative modelling of carbonation induced corrosion initiation

4.6.1 The DuraCrete proposed model

4.6.1.1 Concrete cover depth

4.6.1.2 Material factor

4.6.1.3 Environmental variable

4.6.1.4 Test method variable

4.6.1.5 Execution variable
5. CONDITION INDICATORS: SPECIFICATION AND QUANTITATIVE MODELLING

5.1. Introduction
5.2. Status quo in condition assessment and recent developments

5.3. The concept of condition indicators
5.3.1. Modelling of condition indicators
5.3.2. Quantification of the quality of inspections based on measurements

5.4. The Bayesian updating scheme
5.4.1. Decision making accounting for the quality of inspections

5.5. Initial condition indicators
5.5.1. The construction year
5.5.2. The concrete cover depth
5.5.3. The exposure environment
5.5.4. The $w/c$ ratio
5.5.5. The curing time
5.5.6. The type of binder

5.6. In-service condition indicators
5.6.1. Half-cell potential measurements
5.6.2. Visual inspections
5.6.3. Macrocell systems for corrosion monitoring
5.6.3.1. Condition indication by a macrocell system
5.6.3.2. Application for chloride induced corrosion
5.6.3.3. Application for carbonation induced corrosion
5.6.3.4. Quantification of the inspection quality of macrocell systems based on measurements

5.7. Concrete cover thickness measurements
5.7.1. The concrete cover thickness indicator
5.7.1.1. Application for chloride induced corrosion
5.7.1.2. Application for carbonation induced corrosion
5.7.1.3. Significance of concrete cover depth measurements

5.8. Carbonation depth measurements
5.8.1. The phenolphthalein indicator
5.8.1.1. Quantification of the factor $\varepsilon_c$

5.9. Condition indicators in relevance to the environmental exposure
5.9.1. The macrocell systems indicator
   5.9.1.1. Leading corrosion mechanism: corrosion due to chloride ingress
   5.9.1.2. Leading corrosion mechanism: carbonation

6. SPATIAL VARIABILITY OF DETERIORATION
6.1. Introduction
6.2. Sources and types of spatial variability
6.3. Classification of concrete structures using condition indicators
   6.3.1. Advantages of classification
   6.3.2. Organization of portfolios of structures
6.4. Random field approach
   6.4.1. General definition and representation of random fields
   6.4.2. Homogeneity
      6.4.2.1. On the assumption of homogeneity
   6.4.3. Ergodicity
   6.4.4. Correlation aspects
      6.4.4.1. Choice of correlation model
   6.4.5. Gaussian (normal) random fields
   6.4.6. Estimation and portability of the parameters of a random field
   6.4.7. Discretization of random fields
      6.4.7.1. Estimation of the size of structural elements through the estimation of the correlation radius
      6.4.7.2. Current values proposed as appropriate for the element size
      6.4.7.3. Number and locations of measurements on the estimation of the correlation radius
      6.4.7.4. Choice of the parameter for the estimation of the correlation radius
6.5. Framework for the modelling of spatially distributed deterioration
6.6. Probabilistic modelling of spatially distributed degradation
   6.6.1. Modelling of dependencies
   6.6.2. Modelling of the common influencing parameters
      6.6.2.1. Adjustment of the DuraCrete and other models
   6.6.3. Assessment of the state of the structure
      6.6.3.1. Predictive probability of a condition state
      6.6.3.2. Probability of distributed deterioration

7. ACCEPTANCE CRITERIA FOR THE SPATIAL VARIABILITY
7.1. Introduction
7.2. Outline of the problem
7.3. Quality control acceptance criteria: formulation
   7.3.1. Parameters in the formulation of the acceptance criteria
      7.3.1.1. Condition state
      7.3.1.2. Reference time
      7.3.1.3. Percentage of a zone being in the defined condition state
      7.3.1.4. Target probability
7.4. Testing for the assessment of the spatial variability
   7.4.1. Within and between the elements variability
   7.4.2. Use of “indirect” measurements
7.5. Communication of the acceptance criteria
   7.5.1. Limitations to the communication of acceptance criteria
7.6. Cases of non-compliance
7.7. Updating knowledge on the spatial variation
   7.7.1. Classical Bayesian approach
   7.7.2. Empirical Bayes (EB) framework
7.8. Reference case - I
7.9. Reference case - II
7.10. The Opfikon tunnel case
   7.10.1. Examined structure and segments
   7.10.2. Measured properties
   7.10.3. Relevance for the assessment of the future condition of the structure
      7.10.3.1. Homogeneity and estimation of the correlation radius
      7.10.3.2. Initial condition indicators
      7.10.3.3. Assessment of the chloride diffusion coefficient
   7.10.4. Acceptance criteria of the spatial variability
8. DISCUSSION
   8.1 Overview
   8.2 Outlook
   8.3 Condition indicators
      8.3.1 Macrocell systems
      8.3.2 Concrete cover depth
      8.3.3 The phenolphthalein indicator
   8.4 On the assessment of the spatial variability
   8.5 On the acceptance criteria of the spatial characteristics of concrete material properties
   8.6 On the experimental investigations

REFERENCES

A. EXPERIMENTAL INVESTIGATIONS
   A.1 Testing methods
   A.2 Decommissioned bridge part
      A.2.1 Upper side
      A.2.2 Bottom side
   A.3 New Jersey elements