Handbook of Photovoltaic Science and Engineering

Second Edition

Edited by

Antonio Luque
Instituto de Energía Solar, Universidad Politécnica de Madrid, Spain

and

Steven Hegedus
Institute of Energy Conversion, University of Delaware, USA

©WILEY
A John Wiley and Sons, Ltd., Publication
Contents

About the Editors .. xxiii

List of Contributors ... xxv

Preface to the 2nd Edition ... xxxi

1 Achievements and Challenges of Solar Electricity from Photovoltaics 1

Steven Hegedus and Antonio Luque

1.1 The Big Picture ... 1

1.2 What is Photovoltaics? ... 4

1.2.1 Rating of PV Modules and Generators 6

1.2.2 Collecting Sunlight: Tilt, Orientation, Tracking and Shading .. 8

1.2.3 PV Module and System Costs and Forecasts 9

1.3 Photovoltaics Today .. 10

1.3.1 But First, Some PV History 10

1.3.2 The PV Picture Today 11

1.3.3 The Crucial Role of National Policies 13

1.3.4 Grid Parity: The Ultimate Goal for PV 14

1.4 The Great Challenge .. 17

1.4.1 How Much Land Is Needed? 21

1.4.2 Raw Materials Availability 23

1.4.3 Is Photovoltaics a Clean Green Technology? 23

1.4.4 Energy Payback ... 24

1.4.5 Reliability .. 25

1.4.6 Dispatchability: Providing Energy on Demand 25

1.5 Trends in Technology .. 27

1.5.1 Crystalline Silicon Progress and Challenges 27

1.5.2 Thin Film Progress and Challenges 30

1.5.3 Concentrator Photovoltaics Progress and Challenges 34

1.5.4 Third-Generation Concepts 35

1.6 Conclusions ... 35

References ... 36
2 The Role of Policy in PV Industry Growth: Past, Present and Future
John Byrne and Lado Kurdgelashvili

2.1 Introduction
2.1.1 Changing Climate in the Energy Industry
2.1.2 PV Markets

2.2 Policy Review of Selected Countries
2.2.1 Review of US Policies
2.2.2 Europe
2.2.3 Asia

2.3 Policy Impact on PV Market Development

2.4 Future PV Market Growth Scenarios
2.4.1 Diffusion Curves
2.4.2 Experience Curves
2.4.3 PV Diffusion in the US under Different Policy Scenarios

2.5 Toward a Sustainable Future

References

3 The Physics of the Solar Cell
Jeffery L. Gray

3.1 Introduction

3.2 Fundamental Properties of Semiconductors
3.2.1 Crystal Structure
3.2.2 Energy Band Structure
3.2.3 Conduction-band and Valence-band Densities of State
3.2.4 Equilibrium Carrier Concentrations
3.2.5 Light Absorption
3.2.6 Recombination
3.2.7 Carrier Transport
3.2.8 Semiconductor Equations
3.2.9 Minority-carrier Diffusion Equation
3.2.10 p-n junction Diode Electrostatics
3.2.11 Summary

3.3 Solar Cell Fundamentals
3.3.1 Solar Cell Boundary Conditions
3.3.2 Generation Rate
3.3.3 Solution of the Minority-carrier Diffusion Equation
3.3.4 Derivation of the Solar Cell I-V Characteristic
3.3.5 Interpreting the Solar Cell I-V Characteristic
3.3.6 Properties of Efficient Solar Cells
3.3.7 Lifetime and Surface Recombination Effects

3.4 Additional Topics
3.4.1 Spectral Response
3.4.2 Parasitic Resistance Effects
3.4.3 Temperature Effects
3.4.4 Concentrator Solar Cells
3.4.5 High-level Injection
3.4.6 p-i-n Solar Cells and Voltage-dependent Collection
3.4.7 Heterojunction Solar Cells 126
3.4.8 Detailed Numerical Modeling 127
3.5 Summary 128
References 128

4 Theoretical Limits of Photovoltaic Conversion and New-generation Solar Cells 130

Antonio Luque and Antonio Marti

4.1 Introduction 130
4.2 Thermodynamic Background 131
4.2.1 Basic Relationships 131
4.2.2 The Two Laws of Thermodynamics 133
4.2.3 Local Entropy Production 133
4.2.4 An Integral View 133
4.2.5 Thermodynamic Functions of Radiation 134
4.2.6 Thermodynamic Functions of Electrons 135
4.3 Photovoltaic Converters 136
4.3.1 The Balance Equation of a PV Converter 136
4.3.2 The Monochromatic Cell 140
4.3.3 Thermodynamic Consistency of the Shockley–Queisser Photovoltaic Cell 142
4.3.4 Entropy Production in the Whole Shockley–Queisser Solar Cell 145
4.4 The Technical Efficiency Limit for Solar Converters 147
4.5 Very-high-efficiency Concepts 148
4.5.1 Multijunction Solar Cells 148
4.5.2 Thermophotovoltaic and Thermophotonic Converters 149
4.5.3 Multi-exciton Generation Solar Cells 151
4.5.4 Intermediate Band Solar Cell 155
4.5.5 Hot Electron Solar Cells 161
4.6 Conclusions 164
References 165

5 Solar Grade Silicon Feedstock 169

Bruno Ceccaroli and Otto Lohne

5.1 Introduction 169
5.2 Silicon 170
5.2.1 Physical Properties of Silicon Relevant to Photovoltaics 170
5.2.2 Chemical Properties Relevant to Photovoltaics 172
5.2.3 Health, Safety and Environmental Factors 172
5.2.4 History and Applications of Silicon 173
5.3 Production of Silicon Metal/Metallurgical Grade Silicon 177
5.3.1 The Carbothermic Reduction of Silicon 177
5.3.2 Ladle Refining 179
5.3.3 Casting and Crushing 181
5.3.4 Purity of Commercial Silicon Metal 181
5.3.5 Economics 182
5.4 Production of Polysilicon/Silicon of Electronic and Photovoltaic Grade 183
5.4.1 The Siemens Process: Chlorosilanes and Hot Filament 184
5.4.2 The Union Carbide and Komatsu Process: Monosilane and Hot Filament 187
7 Crystalline Silicon Solar Cells and Modules

Ignacio Tobias, Carlos del Cañizo and Jesús Alonso

7.1 Introduction
7.2 Crystalline Silicon as a Photovoltaic Material
 7.2.1 Bulk Properties
 7.2.2 Surfaces
7.3 Crystalline Silicon Solar Cells
 7.3.1 Cell Structure
 7.3.2 Substrate
 7.3.3 Front Surface
 7.3.4 Back Surface
 7.3.5 Size Effects
 7.3.6 Cell Optics
 7.3.7 Performance Comparison
7.4 Manufacturing Process
 7.4.1 Process Flow
 7.4.2 Screen-printing Technology
 7.4.3 Throughput and Yield
7.5 Variations to the Basic Process
 7.5.1 Thin Wafers
 7.5.2 Back Surface Passivation
 7.5.3 Improvements to the Front Emitter
 7.5.4 Rapid Thermal Processes
7.6 Other Industrial Approaches
 7.6.1 Silicon Ribbons
 7.6.2 Heterojunction with Intrinsic Thin Layer
 7.6.3 All-rear-contact Technologies
 7.6.4 The Silver Cell
7.7 Crystalline Silicon Photovoltaic Modules
 7.7.1 Cell Matrix
 7.7.2 The Layers of the Module
 7.7.3 Lamination
 7.7.4 Post-lamination Steps
 7.7.5 Automation and Integration
 7.7.6 Special Modules
7.8 Electrical and Optical Performance of Modules
 7.8.1 Electrical and Thermal Characteristics
 7.8.2 Fabrication Spread and Mismatch Losses
 7.8.3 Local Shading and Hot Spot Formation
 7.8.4 Optical Properties
7.9 Field Performance of Modules
 7.9.1 Lifetime
 7.9.2 Qualification
7.10 Conclusions
References
CONTENTS

8 High-efficiency III–V Multijunction Solar Cells

D. J. Friedman, J. M. Olson and Sarah Kurtz

8.1 Introduction
8.2 Applications
 8.2.1 Space Solar Cells
 8.2.2 Terrestrial Electricity Generation
8.3 Physics of III–V Multijunction and Single-junction Solar Cells
 8.3.1 Wavelength Dependence of Photon Conversion Efficiency
 8.3.2 Theoretical Limits to Multijunction Efficiencies
 8.3.3 Spectrum Splitting
8.4 Cell Configuration
 8.4.1 Four-terminal
 8.4.2 Three-terminal
 8.4.3 Two-terminal Series-connected (Current-matched)
8.5 Computation of Series-connected Device Performance
 8.5.1 Overview
 8.5.2 Top and Bottom Subcell QE and Jsc
 8.5.3 Multijunction J–V Curves
 8.5.4 Current Matching and Top-cell Thinning
 8.5.5 Current-matching Effect on Fill Factor and Voc
 8.5.6 Efficiency vs Bandgap
 8.5.7 Spectral Effects
 8.5.8 AR Coating Effects
 8.5.9 Concentration
 8.5.10 Temperature Dependence
8.6 Materials Issues Related to GaInP/GaAs/Ge Solar Cells
 8.6.1 Overview
 8.6.2 MOCVD
 8.6.3 GaInP Solar Cells
 8.6.4 GaAs Cells
 8.6.5 Ge Cells
 8.6.6 Tunnel-junction Interconnects
 8.6.7 Chemical Etchants
 8.6.8 Materials Availability
8.7 Epilayer Characterization and Other Diagnostic Techniques
 8.7.1 Characterization of Epilayers
 8.7.2 Transmission-line Measurements
 8.7.3 I–V Measurements of Multijunction Cells
 8.7.4 Evaluation of Morphological Defects
 8.7.5 Device Diagnosis
8.8 Reliability and Degradation
8.9 Future-generation Solar Cells
 8.9.1 Lattice-mismatched GaInP/GaInAs/Ge Cell
 8.9.2 Inverted Lattice-mismatched GaInP/GaInAs/GaInAs
 (1.83, 1.34, 0.89 eV) Cell
 8.9.3 Other Lattice-matched Approaches
 8.9.4 Mechanical Stacks
8.9.5 Growth on Other Substates
8.9.6 Spectrum Splitting
8.10 Summary
References

9 Space Solar Cells and Arrays
Sheila Bailey and Ryne Raffaelle

9.1 The History of Space Solar Cells
9.1.1 Vanguard I to Deep Space I
9.2 The Challenge for Space Solar Cells
9.2.1 The Space Environment
9.2.2 Thermal Environment
9.2.3 Solar Cell Calibration and Measurement
9.3 Silicon Solar Cells
9.4 III–V Solar Cells
9.4.1 Thin Film Solar Cells
9.5 Space Solar Arrays
9.5.1 Body-mounted Arrays
9.5.2 Rigid Panel Planar Arrays
9.5.3 Flexible Fold-out Arrays
9.5.4 Thin Film or Flexible Roll-out Arrays
9.5.5 Concentrating Arrays
9.5.6 High-temperature/Intensity Arrays
9.5.7 Electrostatically Clean Arrays
9.5.8 Mars Solar Arrays
9.5.9 Power Management and Distribution (PMAD)
9.6 Future Cell and Array Possibilities
9.6.1 Low-intensity Low-temperature (LILT) Cells
9.6.2 Quantum Dot Solar Cells
9.6.3 Integrated Power Systems
9.6.4 High Specific Power Arrays
9.6.5 High-radiation Environment Solar Arrays
9.7 Power System Figures of Merit
9.8 Summary
References

10 Photovoltaic Concentrators
Gabriel Sala and Ignacio Anton

10.1 What is the Aim of Photovoltaic Concentration and What Does it Do?
10.2 Objectives, Limitations and Opportunities
10.2.1 Objectives and Strengths
10.2.2 The Analysis of Costs of Photovoltaic Concentrators
10.3 Typical Concentrators; an Attempt at Classification
10.3.1 Types, Components and Operation of a PV Concentrator
10.3.2 Classification of Concentrators
10.3.3 Concentration Systems with Spectral Change
CONTENTS

10.4 Concentration Optics: Thermodynamic Limits
 10.4.1 What is Required in Concentrator Optics? 413
 10.4.2 A Typical Reflexive Concentrator 413
 10.4.3 Ideal Concentration 415
 10.4.4 Constructing an Ideal Concentrator 416
 10.4.5 Optics of Practical Concentrators 417
 10.4.6 Two-stage Optical Systems: Secondary Optics 420

10.5 Factors of Merit for Concentrators in Relation to the Optics
 10.5.1 Optical Efficiency 422
 10.5.2 Distribution or Profile of the Light on the Receptor 424
 10.5.3 Angular Acceptance and Transfer Function 425

10.6 Photovoltaic Concentration Modules and Assemblies
 10.6.1 Definitions 427
 10.6.2 Functions and Characteristics of Concentration Modules 428
 10.6.3 Electrical Connection of Cells in the Module 429
 10.6.4 Thermal-Mechanical Effects Related to Cell Fixing 430
 10.6.5 Description and Manufacturing Issues of Concentration Modules 432
 10.6.6 Adoption of Secondary Optics 433
 10.6.7 Modules with Reflexive Elements (Mirrors) 433
 10.6.8 Description and Manufacturing Issues of Concentrators Based on Assemblies 434

10.7 Tracking for Concentrator Systems
 10.7.1 Tracking Strategies for CPVs 436
 10.7.2 Practical Implementation of Tracking Systems 438
 10.7.3 Tracking Control System 439
 10.7.4 Pointing Strategies 439
 10.7.5 The Cost of Structure and Tracking Control 440

10.8 Measurements of Cells, Modules and Photovoltaic Systems in Concentration
 10.8.1 Measurement of Concentration Cells 440
 10.8.2 Measurement of Concentrator Elements and Modules 442
 10.8.3 Absolute and Relative Measurements with Simulators 443
 10.8.4 Optical Mismatch in CPV Modules and Systems 444
 10.8.5 Testing CPV Modules and Systems Equipped with Multijunction Solar Cells 445
 10.8.6 Multijunction Cells Inside Module Optics 446
 10.8.7 The Production of PV Concentrators versus the Effective Available Radiation Accounting for Daylight Spectrum Variations 447

10.9 Summary 449

References 449

11 Crystalline Silicon Thin-Film Solar Cells via High-temperature and Intermediate-temperature Approaches
Armin G. Aberle and Per I. Widenborg

11.1 Introduction 452
 11.1.1 Motivation for Thin c-Si Solar Cells 452
 11.1.2 Classification of c-Si Thin-Film PV Technologies and Materials 453
 11.1.3 Silicon Deposition Methods 455
CONTENTS

11.1.4 Seeded versus Non-seeded Silicon Film Growth 456
11.2 Modelling
11.2.1 Impact of Diffusion Length in Absorber Region on Cell Efficiency 456
11.2.2 Impact of Surface Recombination 458
11.2.3 Impact of Light Trapping 461
11.3 Crystalline Silicon Thin-Film Solar Cells on Native and High-T Foreign Supporting Materials 462
11.3.1 Native Supporting Materials 462
11.3.2 High-T Foreign Supporting Materials 465
11.4 Crystalline Silicon Thin-Film Solar Cells on Intermediate-T Foreign Supporting Materials
11.4.1 Solar Cells on Metal 468
11.4.2 Solar Cells on Glass 469
11.5 Conclusions
Acknowledgements
References

12 Amorphous Silicon-based Solar Cells 487
Eric A. Schiff, Steven Hegedus and Xuming Deng
12.1 Overview
12.1.1 Amorphous Silicon: The First Dopeable Amorphous Semiconductor 487
12.1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 490
12.1.3 Staebler-Wronski Effect 491
12.1.4 Synopsis 493
12.2 Atomic and Electronic Structure of Hydrogenated Amorphous Silicon 493
12.2.1 Atomic Structure 493
12.2.2 Defects and Metastability 494
12.2.3 Electronic Density-of-States 495
12.2.4 Band Tails, Band Edges, and Bandgaps 496
12.2.5 Defects and Gap States 497
12.2.6 Doping 497
12.2.7 Alloying and Optical Properties 498
12.2.8 Briefing: Nanocrystalline Silicon 499
12.3 Depositing Amorphous Silicon 500
12.3.1 Survey of Deposition Techniques 500
12.3.2 RF Plasma-Enhanced Chemical Vapor Deposition (RF-PECVD) at 13.56 MHz 500
12.3.3 PECVD at Different Frequencies 503
12.3.4 Hot-wire Chemical Vapor Deposition 506
12.3.5 Other Deposition Methods 506
12.3.6 Hydrogen Dilution 506
12.3.7 High-rate Deposition of Nanocrystalline Si (nc-Si) 508
12.3.8 Alloys and Doping 509
12.4 Understanding a-Si pin Cells
12.4.1 Electronic Structure of a pin Device 510
12.4.2 Voltage Depends Weakly on Absorber-layer Thickness 511
12.4.3 What is the Useful Thickness for Power Generation? 513
CONTENTS

12.4.4 Doped Layers and Interfaces 515
12.4.5 Light-soaking Effects 516
12.4.6 Alloy and Nanocrystalline Cells 516
12.4.7 Optical Design of a-Si:H and nc-Si:H Solar Cells 517
12.5 Multijunction Solar Cells 519
 12.5.1 Advantages of Multijunction Solar Cells 519
 12.5.2 Using Alloys to Vary the Band Gap 522
 12.5.3 a-Si/a-SiGe Tandem and a-Si/a-SiGe/a-SiGe Triple-junction Solar Cells 523
 12.5.4 Nanocrystalline Silicon (nc-Si) Solar Cells 527
 12.5.5 Micromorph and Other nc-Si-Based Multijunction Cells 529
12.6 Module Manufacturing 530
 12.6.1 Continuous Roll-to-roll Manufacturing on Stainless Steel Substrates 531
 12.6.2 a-Si Module Production on Glass Superstrates 532
 12.6.3 Manufacturing Cost, Safety, and Other Issues 532
 12.6.4 Module Performance and Reliability 533
12.7 Conclusions and Future Projections 534
 12.7.1 Advantages of a-Si-Based Photovoltaics 534
 12.7.2 Status and Competitiveness of a-Si Photovoltaics 534
 12.7.3 Critical Issues for Further Enhancement and Future Potential 535
 Acknowledgements 536
 References 536

13 Cu(InGa)Se2 Solar Cells 546
William N. Shafarman, Susanne Siebentritt and Lars Stolt
13.1 Introduction 546
13.2 Material Properties 549
 13.2.1 Structure and Composition 549
 13.2.2 Optical Properties and Electronic Structure 552
 13.2.3 Electronic Properties 554
 13.2.4 The Surface and Grain Boundaries 555
 13.2.5 Substrate Effects 557
13.3 Deposition Methods 557
 13.3.1 Substrates and Sodium Addition 558
 13.3.2 Back Contact 559
 13.3.3 Coevaporation of Cu(InGa)Se2 559
 13.3.4 Precursor Reaction Processes 562
 13.3.5 Other Deposition Approaches 564
13.4 Junction and Device Formation 564
 13.4.1 Chemical Bath Deposition 565
 13.4.2 Interface Effects 566
 13.4.3 Other Deposition Methods 567
 13.4.4 Alternative Buffer Layers 567
 13.4.5 Transparent Contacts 569
 13.4.6 High-resistance Window Layers 570
 13.4.7 Device Completion 571
13.5 Device Operation 571
 13.5.1 Light-generated Current 572
13.5.2 Recombination
13.5.3 The Cu(InGa)Se₂/CdS Interface
13.5.4 Wide and Graded Bandgap Devices

13.6 Manufacturing Issues
13.6.1 Processes and Equipment
13.6.2 Module Fabrication
13.6.3 Module Performance and Stability
13.6.4 Production Costs
13.6.5 Environmental Concerns

13.7 The Cu(InGa)Se₂ Outlook

References

14 Cadmium Telluride Solar Cells
Brian E. McCandless and James R. Sites

14.1 Introduction
14.2 Historical Development
14.3 CdTe Properties
14.4 CdTe Film Deposition
14.4.1 Condensation/Reaction of Cd and Te₂ Vapors on a Surface
14.4.2 Galvanic Reduction of Cd and Te Ions at a Surface
14.4.3 Precursor Reaction at a Surface

14.5 CdTe Thin Film Solar Cells
14.5.1 Window Layers
14.5.2 CdTe Absorber Layer and CdCl₂ Treatment
14.5.3 CdS/CdTe Intermixing
14.5.4 Back Contact
14.5.5 Cell Characterization and Analysis

14.6 CdTe Modules

14.7 Future of CdTe-based Solar Cells

Acknowledgements

References

15 Dye-sensitized Solar Cells
Kohjiro Hara and Shogo Mori

15.1 Introduction
15.2 Operating Mechanism of DSSC
15.3 Materials
15.3.1 TCO Electrode
15.3.2 Nanocrystalline TiO₂ Photoelectrode
15.3.3 Ru-complex Photosensitizer
15.3.4 Redox Electrolyte
15.3.5 Counter-electrode
15.3.6 Sealing Materials

15.4 Performance of Highly Efficient DSSCs

15.5 Electron-transfer Processes
15.5.1 Electron Injection from Dye to Metal Oxide
15.5.2 Electron Transport in Nanoporous Electrode
Contents

15.5.3 Kinetic Competition of the Reduction of Dye Cation 654
15.5.4 Charge Recombination between Electron and I$_3$ Ion 654
15.6 New Materials 655
15.6.1 Photosensitizers 655
15.6.2 Semiconductor Materials 661
15.6.3 Electrolytes 662
15.7 Stability 664
15.7.1 Stability of Materials 664
15.7.2 Long-term Stability of Solar Cell Performance 665
15.8 Approach to Commercialization 665
15.8.1 Fabrication of Large-area DSSC Modules 665
15.8.2 Flexible DSSC 666
15.8.3 Other Subjects for Commercialization 668
15.9 Summary and Prospects 668
Acknowledgements 669
References 670

16 Sunlight Energy Conversion Via Organics 675
Sam-Shajing Sun and Hugh O’Neill
16.1 Principles of Organic and Polymeric Photovoltaics 675
16.1.1 Introduction 675
16.1.2 Organic versus Inorganic Optoelectronics Processes 676
16.1.3 Organic/Polymeric Photovoltaic Processes 679
16.2 Evolution and Types of Organic and Polymeric Solar Cells 682
16.2.1 Single-layer Organic Solar Cells (Schottky Cells) 682
16.2.2 Double-layer Donor/Acceptor Heterojunction Organic Solar Cells (Tang Cells) 684
16.2.3 Bulk Heterojunction Organic Solar Cells 687
16.2.4 N-type Nanoparticles/Nanorods with p-type Polymer Blend Hybrid Solar Cells 688
16.2.5 Bicontinuous Ordered Nanostructure (BONS) Organic Solar Cells 688
16.2.6 Tandem Structured Organic Solar Cells 689
16.2.7 “Ideal” High-efficiency Organic Solar Cells 692
16.3 Organic and Polymeric Solar Cell Fabrication and Characterization 692
16.3.1 Organic and Polymeric Solar Cell Fabrication and Stability 692
16.3.2 Status and Challenges of OPV Manufacturing 694
16.4 Natural Photosynthetic Sunlight Energy Conversion Systems 695
16.4.1 Photosynthetic Pigments 696
16.4.2 Antenna Complexes 696
16.4.3 Photosynthetic Reaction Centers 698
16.5 Artificial Photosynthetic Systems 699
16.5.1 Antenna Systems 700
16.5.2 Cyclic Porphyrin Arrays 700
16.5.3 Dendrimers 701
16.5.4 Self-assembled Systems 703
16.6 Artificial Reaction Centers 704
16.6.1 Bacterial Reaction Center 704
CONTENTS

17.7.3 Physical and Structural Characterization 774
17.7.4 Chemical and Surface Characterization 775
17.8 TCO Stability 777
17.9 Recent Developments and Prospects 780
17.9.1 Evolution of Commercial TCO-coated Glass 780
17.9.2 Quest for High Carrier Mobility 782
17.9.3 Enhancement of Scattering and Useful Absorption 784
17.9.4 Doped TiO₂ and Other Wide-gap Oxides 784
17.9.5 Other Types of Transparent Conductor 785
17.9.6 Amorphous TCOs 786
References 788

18 Measurement and Characterization of Solar Cells and Modules 797
Keith Emery
18.1 Introduction 797
18.2 Rating PV Performance 797
18.2.1 Standard Reporting Conditions 798
18.2.2 Alternative Peak Power Ratings 802
18.2.3 Energy-based Performance Rating Methods 803
18.2.4 Translation Equations to Reference Conditions 805
18.3 Current–Voltage Measurements 807
18.3.1 Measurement of Irradiance 807
18.3.2 Simulator-based I–V Measurements: Theory 808
18.3.3 Primary Reference Cell Calibration Methods 809
18.3.4 Uncertainty Estimates in Reference Cell Calibration Procedures 812
18.3.5 Intercomparison of Reference Cell Calibration Procedures 814
18.3.6 Multijunction Cell Measurement Procedures 815
18.3.7 Cell and Module I–V Systems 817
18.3.8 Concentrator Measurement Issues 822
18.3.9 Solar Simulators 823
18.4 Spectral Responsivity Measurements 824
18.4.1 Filter-based Systems 825
18.4.2 Grating-based Systems 827
18.4.3 Spectral Responsivity Measurement Uncertainty 828
18.5 Module Qualification and Certification 831
18.6 Summary 833
Acknowledgements 834
References 834

19 PV Systems 841
Charles M. Whitaker, Timothy U. Townsend, Anat Razon, Raymond M. Hudson and Xavier Vallvé
19.1 Introduction: There is gold at the end of the rainbow 841
19.1.1 Historical Context 841
19.1.2 Contemporary Situation 842
19.2 System Types
19.2.1 Small Off-grid DC System
19.2.2 Off-grid AC System
19.2.3 On-grid Systems
19.2.4 Hybrid PV Systems
19.2.5 Micro-grids
19.2.6 Smart Grid
19.3 Exemplary PV Systems
19.4 Ratings
19.5 Key System Components
19.5.1 Modules
19.5.2 Inverters
19.5.3 On-grid Inverters
19.5.4 Off-grid Inverters
19.5.5 Electrical Balance of System (BOS) and Switchgear
19.5.6 Storage
19.5.7 Charge Controllers
19.5.8 Structures
19.5.9 Standards
19.6 System Design Considerations
19.6.1 Site Analysis
19.6.2 Location
19.6.3 Orientation and Tilt
19.6.4 Shading
19.6.5 Dust and Soiling
19.6.6 Roof and Ground Considerations
19.6.7 Interconnection Equipment
19.6.8 Load Data
19.6.9 Maintenance Access
19.7 System Design
19.7.1 Component Selection Considerations
19.7.2 Economics and Design
19.7.3 System Integration
19.7.4 Intermittency
19.7.5 Material Failure
19.7.6 Modeling
19.8 Installation
19.9 Operation and Maintenance/Monitoring
19.10 Removal, Recycling and Remediation
19.11 Examples
19.11.1 Example Off-grid House/Cabin AC/DC/diesel/batteries
19.11.2 On-grid Example Systems
19.11.3 On-grid House
19.11.4 Commercial Roof
19.11.5 Utility-scale Ground-mounted Tracking
19.11.6 References
CONTENTS

20 Electrochemical Storage for Photovoltaics

Dirk Uwe Sauer

20.1 Introduction 896
20.2 General Concept of Electrochemical Batteries 898
 20.2.1 Fundamentals of Electrochemical Cells 898
 20.2.2 Batteries with Internal and External Storage 903
 20.2.3 Commonly Used Technical Terms and Definitions 905
 20.2.4 Definitions of Capacity and State of Charge 907
20.3 Typical Operation Conditions of Batteries in PV Applications 908
 20.3.1 An Example of an Energy Flow Analysis 908
 20.3.2 Classification of Battery Operating Conditions in PV Systems 909
20.4 Secondary Electrochemical Accumulators with Internal Storage 913
 20.4.1 Overview 913
 20.4.2 NiCd Batteries 914
 20.4.3 Nickel–Metal Hydride (NiMH) Batteries 916
 20.4.4 Rechargeable Alkali Mangan (RAM) Batteries 917
 20.4.5 Lithium–Ion and Lithium–Polymer Batteries 917
 20.4.6 Double-layer Capacitors 919
 20.4.7 The Lead–Acid Battery 921
20.5 Secondary Electrochemical Battery Systems with External Storage 941
 20.5.1 Redox-flow Batteries 942
 20.5.2 Hydrogen/Oxygen Storage Systems 944
20.6 Investment and Lifetime Cost Considerations 948
20.7 Conclusion 950
References 951

21 Power Conditioning for Photovoltaic Power Systems

Heribert Schmidt, Bruno Burger and Jürgen Schmid

21.1 Charge Controllers and Monitoring Systems for Batteries in PV Power Systems 955
 21.1.1 Charge Controllers 955
 21.1.2 Charge Equaliser for Long Battery Strings 967
21.2 Inverters 969
 21.2.1 General Characteristics of Inverters 969
 21.2.2 Inverters for Grid-connected Systems 970
 21.2.3 Inverters for Stand-alone Systems 973
 21.2.4 Basic Design Approaches for PV Inverters 975
 21.2.5 Modelling of Inverters, European and CEC Efficiency 978
 21.2.6 Interaction of Inverters and PV Modules 980
References 983

22 Energy Collected and Delivered by PV Modules

Eduardo Lorenzo

22.1 Introduction 984
22.2 Movement between Sun and Earth 985
22.3 Solar Radiation Components 991
22.4 Solar Radiation Data and Uncertainty 993
 22.4.1 Clearness Index 997
CONTENTS

22.5 Radiation on Inclined Surfaces

- 22.5.1 Estimation of the Direct and Diffuse Components of Horizontal Radiation, Given the Global Radiation
- 22.5.2 Estimation of the Instantaneous Irradiance from the Daily Irradiation
- 22.5.3 Estimation of the Radiation on Surfaces on Arbitrary Orientation, Given the Components Falling on a Horizontal Surface

22.6 Diurnal Variations of the Ambient Temperature

22.7 Effects of the Angle of Incidence and of Dirt

22.8 Some Calculation Tools

- 22.8.1 Generation of Daily Radiation Sequences
- 22.8.2 The Reference Year
- 22.8.3 Shadows and Trajectory Maps

22.9 Irradiation on Most Widely Studied Surfaces

- 22.9.1 Fixed Surfaces
- 22.9.2 Sun-tracking Surfaces
- 22.9.3 Concentrators

22.10 PV Generator Behaviour Under Real Operation Conditions

- 22.10.1 The Selected Methodology
- 22.10.2 Second-order Effects

22.11 Reliability and Sizing of Stand-alone PV Systems

22.12 The Case of Solar Home Systems

22.13 Energy Yield of Grid-connected PV Systems

- 22.13.1 Irradiance Distributions and Inverter Size

22.14 Conclusions

- Acknowledgements
- References

23 PV in Architecture

Tjerk H. Reijenga and Henk F. Kaan

- 23.1 Introduction
 - 23.1.1 Photovoltaics (PV) as a Challenge for Architects and Engineers
 - 23.1.2 Definition of Building Integration

23.2 PV in Architecture

- 23.2.1 Architectural Functions of PV Modules
- 23.2.2 PV Integrated as Roofing Louvres, Façades and Shading Devices
- 23.2.3 Architectural Criteria for Well-integrated Systems
- 23.2.4 Integration of PV Modules in Architecture

23.3 BIPV Basics

- 23.3.1 Categories and Types of Building
- 23.3.2 Cells and Modules

23.4 Steps in the Design Process with PV

- 23.4.1 Urban Aspects
- 23.4.2 Practical Rules for Integration
- 23.4.3 Step-by-step Design
- 23.4.4 Design Process: Strategic Planning

23.5 Concluding Remarks

- References