Self-healing Materials

Fundamentals, Design Strategies, and Applications

Edited by
Swapan Kumar Ghosh
Contents

Preface xi
List of Contributors xiii

1 Self-healing Materials: Fundamentals, Design Strategies, and Applications 1
 Swapan Kumar Ghosh
 1.1 Introduction 1
 1.2 Definition of Self-healing 1
 1.3 Design Strategies 2
 1.3.1 Release of Healing Agents 2
 1.3.1.1 Microcapsule Embedment 3
 1.3.1.2 Hollow Fiber Embedment 4
 1.3.1.3 Microvascular System 8
 1.3.2 Reversible Cross-links 9
 1.3.2.1 Diels–Alder (DA) and Retro-DA Reactions 10
 1.3.2.2 Ionomers 12
 1.3.2.3 Supramolecular Polymers 13
 1.3.3 Miscellaneous Technologies 17
 1.3.3.1 Electrohydrodynamics 17
 1.3.3.2 Conductivity 20
 1.3.3.3 Shape Memory Effect 21
 1.3.3.4 Nanoparticle Migrations 22
 1.3.3.5 Co-deposition 22
 1.4 Applications 23
 1.5 Concluding Remarks 25

2 Self-healing Polymers and Polymer Composites 29
 Ming Qiu Zhang, Min Zhi Rong and Tao Yin
 2.1 Introduction and the State of the Art 29
 2.2 Preparation and Characterization of the Self-healing Agent Consisting of Microencapsulated Epoxy and Latent Curing Agent 35
 2.2.1 Preparation of Epoxy-loaded Microcapsules and the Latent Curing Agent CuBr2(2-Melm)4 35

Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31829-2
1. Introduction 73

2. Ionomer Background 74

3. Morphology 75

4. Ionomers Studied for Self-healing 78

5. Self-healing of Ionomers 79

6. Healing versus Self-healing 80

7. Damage Modes 81

8. Ballistic Self-healing Mechanism 83

9. Is Self-healing an Ionic Phenomenon? (Part I) 84

10. Is Self-healing an Ionic Phenomenon? (Part II) 86

11. Self-healing Stimulus 88

12. Other Ionomer Studies 89

13. Self-healing Ionomer Composites 95

14. Conclusions 97

Self-healing Anticorrosion Coatings 101

Mikhail Zeludkevich

1. Introduction 101

2. Reflow-based and Self-sealing Coatings 103

3. Self-healing Bulk Composites 103

4. Coatings with Self-healing Ability based on the Reflow Effect 105

5. Self-sealing Protective Coatings 108

6. Self-healing Coating-based Active Corrosion Protection 109

7. Conductive Polymer Coatings 110

8. Active Anticorrosion Conversion Coatings 113

9. Protective Coatings with Inhibitor-doped Matrix 119

10. Self-healing Anticorrosion Coatings based on Nano-/Microcontainers of Corrosion Inhibitors 122

11. Coatings with Micro-/Nanocarriers of Corrosion Inhibitors 123

Self-healing Anticorrosion Coatings 101

Mikhail Zeludkevich

1. Introduction 101

2. Reflow-based and Self-sealing Coatings 103

3. Self-healing Bulk Composites 103

4. Coatings with Self-healing Ability based on the Reflow Effect 105

5. Self-sealing Protective Coatings 108

6. Self-healing Coating-based Active Corrosion Protection 109

7. Conductive Polymer Coatings 110

8. Active Anticorrosion Conversion Coatings 113

9. Protective Coatings with Inhibitor-doped Matrix 119

10. Self-healing Anticorrosion Coatings based on Nano-/Microcontainers of Corrosion Inhibitors 122

11. Coatings with Micro-/Nanocarriers of Corrosion Inhibitors 123

Self-healing Anticorrosion Coatings 101

Mikhail Zeludkevich

1. Introduction 101

2. Reflow-based and Self-sealing Coatings 103

3. Self-healing Bulk Composites 103

4. Coatings with Self-healing Ability based on the Reflow Effect 105

5. Self-sealing Protective Coatings 108

6. Self-healing Coating-based Active Corrosion Protection 109

7. Conductive Polymer Coatings 110

8. Active Anticorrosion Conversion Coatings 113

9. Protective Coatings with Inhibitor-doped Matrix 119

10. Self-healing Anticorrosion Coatings based on Nano-/Microcontainers of Corrosion Inhibitors 122

11. Coatings with Micro-/Nanocarriers of Corrosion Inhibitors 123
5 **Self-healing Processes in Concrete** 141
Erk Schlangen and Christopher Joseph

5.1 Introduction 141
5.2 State of the Art 144
5.2.1 Definition of Terms 144
5.2.1.1 Intelligent Materials 144
5.2.1.2 Smart Materials 145
5.2.1.3 Smart Structures 145
5.2.1.4 Sensory Structures 146
5.2.2 Autogenous Healing of Concrete 146
5.2.3 Autonomic Healing of Concrete 147
5.2.3.1 Healing Agents 148
5.2.3.2 Encapsulation Techniques 149
5.3 Self-healing Research at Delft 152
5.3.1 Introduction 152
5.3.2 Description of Test Setup for Healing of Early Age Cracks 152
5.3.3 Description of Tested Variables 154
5.3.4 Experimental Findings 155
5.3.4.1 Influence of Compressive Stress 155
5.3.4.2 Influence of Cement Type 156
5.3.4.3 Influence of Age When the First Crack is Produced 158
5.3.4.4 Influence of Crack Width 159
5.3.4.5 Influence of Relative Humidity 159
5.3.5 Simulation of Crack Healing 163
5.3.6 Discussion on Early Age Crack Healing 163
5.3.7 Measuring Permeability 164
5.3.8 Self-healing of Cracked Concrete: A Bacterial Approach 165
5.4 Self-healing Research at Cardiff 168
5.4.1 Introduction 168
5.4.2 Experimental Work 169
5.4.2.1 Preliminary Investigations 169
5.4.2.2 Experimental Procedure 172
5.4.3 Results and Discussion 173
5.4.4 Modeling the Self-healing Process 175
5.4.5 Conclusions and Future Work 177
5.5 A View to the Future 178
5.6 Acknowledgments 179
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>History 185</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Mechanism 187</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Composition and Structure 190</td>
<td></td>
</tr>
<tr>
<td>6.5.1</td>
<td>Composition 190</td>
<td></td>
</tr>
<tr>
<td>6.5.2</td>
<td>SiC Figuration 192</td>
<td></td>
</tr>
<tr>
<td>6.5.3</td>
<td>Matrix 193</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Valid Conditions 194</td>
<td></td>
</tr>
<tr>
<td>6.6.1</td>
<td>Atmosphere 194</td>
<td></td>
</tr>
<tr>
<td>6.6.2</td>
<td>Temperature 195</td>
<td></td>
</tr>
<tr>
<td>6.6.3</td>
<td>Stress 198</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Crack-healing Effect 200</td>
<td></td>
</tr>
<tr>
<td>6.7.1</td>
<td>Crack-healing Effects on Fracture Probability 200</td>
<td></td>
</tr>
<tr>
<td>6.7.2</td>
<td>Fatigue Strength 202</td>
<td></td>
</tr>
<tr>
<td>6.7.3</td>
<td>Crack-healing Effects on Machining Efficiency 204</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>New Structural Integrity Method 207</td>
<td></td>
</tr>
<tr>
<td>6.8.1</td>
<td>Outline 207</td>
<td></td>
</tr>
<tr>
<td>6.8.2</td>
<td>Theory 207</td>
<td></td>
</tr>
<tr>
<td>6.8.3</td>
<td>Temperature Dependence of the Minimum Fracture Stress Guaranteed 209</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>Advanced Self-crack Healing Ceramics 212</td>
<td></td>
</tr>
<tr>
<td>6.9.1</td>
<td>Multicomposite 212</td>
<td></td>
</tr>
<tr>
<td>6.9.2</td>
<td>SiC Nanoparticle Composites 213</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Self-healing of Metallic Materials: Self-healing of Creep Cavity and Fatigue Cavity/crack 219 Norio Shinya</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction 219</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Self-healing of Creep Cavity in Heat Resisting Steels 220</td>
<td></td>
</tr>
<tr>
<td>7.2.1</td>
<td>Creep Fracture Mechanism and Creep Cavity 221</td>
<td></td>
</tr>
<tr>
<td>7.2.2</td>
<td>Sintering of Creep Cavity at Service Temperature 223</td>
<td></td>
</tr>
<tr>
<td>7.2.3</td>
<td>Self-healing Mechanism of Creep Cavity 225</td>
<td></td>
</tr>
<tr>
<td>7.2.3.1</td>
<td>Creep Cavity Growth Mechanism 225</td>
<td></td>
</tr>
<tr>
<td>7.2.3.2</td>
<td>Self-healing Layer on Creep Cavity Surface 226</td>
<td></td>
</tr>
<tr>
<td>7.2.4</td>
<td>Self-healing of Creep Cavity by B Segregation 227</td>
<td></td>
</tr>
<tr>
<td>7.2.4.1</td>
<td>Segregation of Trace Elements 227</td>
<td></td>
</tr>
<tr>
<td>7.2.4.2</td>
<td>Self-healing of Creep Cavity by B Segregation onto Creep Cavity Surface 229</td>
<td></td>
</tr>
<tr>
<td>7.2.4.3</td>
<td>Effect of B Segregation on Creep Rupture Properties 234</td>
<td></td>
</tr>
<tr>
<td>7.2.5</td>
<td>Self-healing of Creep Cavity by BN Precipitation on to Creep Cavity Surface 234</td>
<td></td>
</tr>
<tr>
<td>7.2.5.1</td>
<td>Precipitation of BN on Outer Free Surface by Heating in Vacuum 234</td>
<td></td>
</tr>
<tr>
<td>7.2.5.2</td>
<td>Self-healing of Creep Cavity by BN Precipitation 234</td>
<td></td>
</tr>
<tr>
<td>7.2.5.3</td>
<td>Effect of BN Precipitation on Creep Rupture Properties 238</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Self-healing of Fatigue Damage 241</td>
<td></td>
</tr>
<tr>
<td>7.3.1</td>
<td>Fatigue Damage Leading to Fracture 241</td>
<td></td>
</tr>
</tbody>
</table>
7.3.2 Delivery of Solute Atom to Damage Site 242
7.3.2.1 Pipe Diffusion 242
7.3.2.2 Solute-vacancy Complexes 243
7.3.3 Self-healing Mechanism for Fatigue Cavity/Crack 243
7.3.3.1 Closure of Fatigue Cavity/Crack by Deposition of Precipitate 244
7.3.3.2 Closure of Fatigue Cavity/Crack by Volume Expansion with Precipitation 244
7.3.3.3 Replenishment of Strengthening Phase by Dynamic Precipitation on Dislocation 244
7.3.4 Effect of Self-healing on Fatigue Properties of Al Alloy 246
7.4 Summary and Remarks 247

8 Principles of Self-healing in Metals and Alloys: An Introduction 251
8.1 Introduction 251
8.2 Liquid-based Healing Mechanism 252
8.2.1 Modeling of a Liquid-assisted Self-healing Metal 256
8.3 Healing in the Solid State: Precipitation-assisted Self-healing Metals 257
8.3.1 Basic Phenomena: Age (Precipitation) Hardening 257
8.3.2 Self-healing in Aluminum Alloys 258
8.3.3 Self-healing in Steels 261
8.3.4 Modeling of Solid-state Healing 262
8.4 Conclusions 263

9 Modeling Self-healing of Fiber-reinforced Polymer-matrix Composites with Distributed Damage 267
9.1 Introduction 267
9.2 Damage Model 268
9.2.1 Damage Variable 268
9.2.2 Free-energy Potential 269
9.2.3 Damage Evolution Equations 270
9.3 Healing Model 272
9.4 Damage and Plasticity Identification 274
9.5 Healing Identification 277
9.6 Damage and Healing Hardening 279
9.7 Verification 280

Index 285