Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF EXAMPLES</td>
<td>XII</td>
<td></td>
</tr>
<tr>
<td>NOTATION</td>
<td>XV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION TO GROUNDWATER GEOCHEMISTRY</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Groundwater as drinking water</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Standards for drinking water</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Units of analysis</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Groundwater quality</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Sampling of groundwater</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Depth integrated or depth specific sampling</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Procedures for sampling of groundwater</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Chemical analysis of groundwater</td>
<td>15</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Field analyses and sample conservation</td>
<td>15</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Accuracy of chemical analysis</td>
<td>17</td>
</tr>
<tr>
<td>Problems</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>FROM RAINWATER TO GROUNDWATER</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>The hydrological cycle</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>The composition of rainwater</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Sources and transport of atmospheric pollutants</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Stable isotopes in rain</td>
<td>31</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Isotopic ratios and the δ notation</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2</td>
<td>The Rayleigh process</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3</td>
<td>The isotopic composition of rain</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Dry deposition and evapotranspiration</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Mass balances and ecosystem dynamics</td>
<td>46</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Water quality profiles in the unsaturated soil</td>
<td>49</td>
</tr>
<tr>
<td>2.6</td>
<td>Overall controls on water quality</td>
<td>51</td>
</tr>
<tr>
<td>Problems</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>References</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>FLOW AND TRANSPORT</td>
<td>63</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow in the unsaturated zone</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow in the saturated zone</td>
<td>64</td>
</tr>
</tbody>
</table>
VIII Contents

3.2.1 Darcy's law
3.2.2 Flowlines in the subsoil
3.2.3 Effects of non-homogeneity
3.2.4 The aquifer as a chemical reactor
3.3 Dating of groundwater
3.4 Retardation
3.4.1 The retardation equation
3.4.2 Indifferent and broadening fronts
3.4.3 Sharpening fronts
3.4.4 Solid and solute concentrations
3.5 Diffusion
3.5.1 Diffusion coefficients
3.5.2 Diffusion as a random process
3.5.3 Diffusive transport
3.5.4 Isotope diffusion
3.6 Dispersion
3.6.1 Column breakthrough curves
3.6.2 Dispersion coefficients and dispersivity
3.6.3 Macrodispersivity

Problems
References

4 MINERALS AND WATER
4.1 Equilibria and the solubility of minerals
4.2 Corrections for solubility calculations
4.2.1 Concentration and activity
4.2.2 Aqueous complexes
4.2.3 Combined complexes and activity corrections
4.2.4 Calculation of saturation states
4.3 Mass action constants and thermodynamics
4.3.1 The calculation of mass action constants
4.3.2 Calculation of mass action constants at different temperature
4.4 Equilibrium calculations with PHREEQC
4.4.1 Speciation calculations using PHREEQC
4.4.2 The PHREEQC database
4.4.3 Mineral equilibration
4.5 Solid solutions
4.5.1 Basic theory
4.5.2 The fractionation factor for solid solutions
4.5.3 Kinetic effects on the fractionation factor
4.6 Kinetics of geochemical processes
4.6.1 Kinetics and equilibrium
4.6.2 Chemical reactions and rates
4.6.3 Temperature dependency of reaction rates
4.6.4 Mechanisms of dissolution and crystallization
4.6.5 Rate laws for mineral dissolution and precipitation

Problems
References

5 CARBONATES AND C B
5.1 Carbonate minerals
5.2 Dissolved carbonate
5.2.1 The carbonic
5.2.2 Determining t
5.3 Carbon dioxide in so
5.4 Calcite solubility an
5.4.1 Calcite dissolv
5.4.2 Two field exam
5.5 Carbonate rock aqu
5.5.1 Dolomite and
5.5.2 Pleistocene car
5.6 Kinetics of carbonat
5.6.1 Dissolution
5.6.2 Precipitation
5.7 Carbon isotopes
5.7.1 Carbon-13 tre
5.7.2 14C and grou
5.7.3 Retardation by

Problems
References

6 ION EXCHANGE
6.1 Cation exchange at
6.2 Adsorbents in soils
6.2.1 Clay minerals
6.3 Exchange equations
6.3.1 Values for exc
6.3.2 Calculation of
6.3.3 Calculation of
6.3.4 Determination
6.4 Chromatography of
6.4.1 Field example
6.4.2 Salinity effect
6.4.3 Quality patter
6.4.4 Fronts and ch
6.4.5 Modeling ch
6.5 Physical non-equilib
6.5.1 Modeling stag
6.6 The Gouy-Chapman
6.7.1 The origin and occ
6.7.2 Sorption isotherms

Problems
References

7 SORPTION OF TRACE
7.1 The origin and occ
7.2 Sorption isotherms

Problems
References
5 CARBONATES AND CARBON DIOXIDE
64 5.1 Carbonate minerals 175
67 5.2 Dissolved carbonate equilibria 176
70 5.2.1 The carbonic acid system 178
71 5.2.2 Determining the carbonate speciation in groundwater 183
75 5.3 Carbon dioxide in soils 186
76 5.4 Calcite solubility and P_{CO_2} 191
79 5.4.1 Calcite dissolution in systems open and closed for CO$_2$ gas 193
82 5.4.2 Two field examples 195
84 5.5 Carbonate rock aquifers 197
86 5.5.1 Dolomite and dedolomitization 201
87 5.5.2 Pleistocene carbonate aquifers 205
89 5.6 Kinetics of carbonate reactions 210
93 5.6.1 Dissolution 210
96 5.6.2 Precipitation 217
99 5.7 Carbon isotopes 218
102 5.7.1 Carbon-13 trends in aquifers 221
105 5.7.2 14C and groundwater age 226
107 5.7.3 Retardation by sorption and stagnant zone diffusion 228
113 Problems 232
115 References 236

6 ION EXCHANGE
119 6.1 Cation exchange at the salt/fresh water interface 241
119 6.2 Adsorbents in soils and aquifers 242
123 6.2.1 Clay minerals 247
123 6.3 Exchange equations 248
127 6.3.1 Values for exchange coefficients 251
128 6.3.2 Calculation of exchanger composition 254
131 6.3.3 Calculation of exchanger composition with PHREEQC 255
132 6.3.4 Determination of exchangeable cations 257
132 6.4 Chromatography of cation exchange 260
133 6.4.1 Field examples of freshening 262
135 6.4.2 Salinity effects on cation exchange 263
135 6.4.3 Quality patterns with salinization 268
137 6.4.4 Fronts and chromatographic sequences 271
141 6.4.5 Modeling chromatographic sequences with PHREEQC 272
142 6.5 Physical non-equilibrium 275
142 6.5.1 Modeling stagnant zones 283
148 6.6 The Gouy-Chapman theory of the double layer 285
149 6.6.1 Numerical integration of the double layer equations 288
152 6.6.2 Practical aspects of double layer theory 293
152 6.7 Irrigation water quality 296
153 Problems 303
159 References 306

7 SORPTION OF TRACE METALS
162 7.1 The origin and occurrence of heavy metals in groundwater 311
169 7.2 Sorption isotherms and distribution coefficients 315
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>7.2.1 Distribution coefficients from ion exchange</td>
</tr>
<tr>
<td>322</td>
<td>7.3 Variable charge surfaces</td>
</tr>
<tr>
<td>322</td>
<td>7.3.1 Titration curves with suspended oxide particles</td>
</tr>
<tr>
<td>324</td>
<td>7.3.2 Surface charge and point of zero charge, PZC</td>
</tr>
<tr>
<td>328</td>
<td>7.3.3 Sorption edges</td>
</tr>
<tr>
<td>333</td>
<td>7.3.4 Sorption, absorption, and coprecipitation</td>
</tr>
<tr>
<td>334</td>
<td>7.4 Surface complexation</td>
</tr>
<tr>
<td>338</td>
<td>7.4.1 Surface complexation models</td>
</tr>
<tr>
<td>340</td>
<td>7.4.2 The ferricydrite (Fe(OH)₃) database</td>
</tr>
<tr>
<td>343</td>
<td>7.4.3 Diffuse double layer concentrations in surface complexation models</td>
</tr>
<tr>
<td>344</td>
<td>7.5 Complexation to humic acids</td>
</tr>
<tr>
<td>346</td>
<td>7.5.1 The ion association model</td>
</tr>
<tr>
<td>348</td>
<td>7.5.2 Tipping and Hurley’s discrete site model “WHAM”</td>
</tr>
<tr>
<td>354</td>
<td>7.5.3 Distribution models</td>
</tr>
<tr>
<td>356</td>
<td>7.5.4 Humic acids as carriers of trace elements</td>
</tr>
<tr>
<td>358</td>
<td>7.6 Kinetics of surface complexation</td>
</tr>
<tr>
<td>363</td>
<td>7.6.1 Extrapolation of adsorption kinetics for other metal ions</td>
</tr>
<tr>
<td>367</td>
<td>7.7 Field applications</td>
</tr>
<tr>
<td>369</td>
<td>Problems</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

375	8 SILICATE WEATHERING
375	8.1 Weathering processes
380	8.2 The stability of weathering products
383	8.3 Incongruent dissolution of primary silicates
389	8.4 The mass balance approach to weathering
395	8.5 Kinetics of silicate weathering
400	8.6 Field weathering rates
404	8.7 Acid groundwater
405	8.7.1 Buffering processes in aquifers
	Problems
	References

415	9 REDOX PROCESSES
415	9.1 Basic theory
420	9.1.1 The significance of redox measurements
422	9.1.2 Redox reactions and the pe concept
423	9.2 Redox diagrams
424	9.2.1 Stability of water
425	9.2.2 The stability of dissolved species and gases: Arsenic
432	9.2.3 The stability of minerals in redox diagrams
438	9.3 Sequences of redox reactions and redox zoning
442	9.3.1 Decomposition of organic matter
446	9.4 Oxygen consumption
450	9.4.1 Pyrite oxidation
450	9.4.2 Kinetics of pyrite oxidation
453	9.4.3 Oxygen transport and pyrite oxidation
458	9.5 Nitrate reduction
459	9.5.1 Nitrate reduction by organic matter oxidation
462	9.5.2 Nitrate reduction by pyrite and ferrous iron
	9.6 Iron reduction and restoration of natural redox conditions
	9.6.1 Iron in aquifers
	9.6.2 Reductive dissolution
	9.7 Sulfate reduction and formation of metal sulfides
	9.7.1 The formation of metal sulfides
	9.8 The formation of metal sulfides
	Problems
	References

410	10 POLLUTION BY ORGANIC COMPOUNDS
	10.1 Gas-water exchange
	10.1.1 Evaporation and natural scenarios
	10.3 Sorption of organic compounds
	10.3.1 Sorption on natural surfaces
	10.3.3 Release from aquifers
	10.4 Transformation reactions
	10.4.1 Monod biodegradation
	References

412	11 NUMERICAL MODELS
	11.1 Numerical models
	11.1.1 Only diffusion
	11.1.2 Advection
	11.1.3 Non-linear flow
	11.2 Examples of hydrogeochemical codes
	11.2.1 Tritium-HI
	11.2.2 Toluene dechlorination
	11.2.3 Remediation models
	11.2.4 Acid drainage
	11.2.5 In-situ iron oxidation of organic matter
	11.2.6 Arsenic in groundwater
	11.2.7 Fractionation of arsenic
	References

APPENDIX A: HYDROGEOCHEMISTRY

APPENDIX B: ANSWERS

INDEX
9.6 Iron reduction and sources of iron in groundwater

- 9.6.1 Iron in aquifer sediments
- 9.6.2 Reductive dissolution of iron oxides
- 9.7 Sulfate reduction and iron sulfide formation
 - 9.7.1 The formation of iron sulfides
- 9.8 The formation of methane

Problems

References

10 POLLUTION BY ORGANIC CHEMICALS

- 10.1 Gas-water exchange
 - 10.1.1 Evaporation of a pure organic liquid
- 10.2 Transport of pure organic liquids through soil
- 10.3 Sorption of organic chemicals
 - 10.3.1 Sorption of charged organic molecules
 - 10.3.2 Sorption in stagnant zones
 - 10.3.3 Release from stagnant zones and blobs
- 10.4 Transformation reactions of organic chemicals
 - 10.4.1 Monod biotransformation kinetics
- 10.5 Kinetic complexation of heavy metals on organics

Problems

References

11 NUMERICAL MODELING

- 11.1 Numerical modeling of transport
 - 11.1.1 Only diffusion
 - 11.1.2 Advection and diffusion/dispersion
 - 11.1.3 Non-linear reactions
- 11.2 Examples of hydrogeochemical transport modeling
 - 11.2.1 Tritium-Helium age dating
 - 11.2.2 Toluene degradation in an aquifer
 - 11.2.3 Remediation of a BTEX polluted site
 - 11.2.4 Acid drainage from a Uranium mine
 - 11.2.5 In-situ iron removal from groundwater
 - 11.2.6 Arsenic in Bangladesh groundwater
 - 11.2.7 Fractionation of isotopes

References

APPENDIX A: HYDROGEOCHEMICAL MODELING WITH PHREEQC

APPENDIX B: ANSWERS TO PROBLEMS

INDEX
List of Examples

1.1 Recalculation of concentration units
1.2 Effect of iron oxidation on analytical results
1.3 Estimating the reliability of water analyses
1.4 Analytical errors due to precipitation in the sampling bottle

2.1 Calculate 618O of rain condensing from vapor
2.2 Calculate recharge using the Cl− mass balance
2.3 Estimate the Cl− and NO3 concentration in groundwater below agricultural land

3.1 Calculate the travel time from midway in the Vejen waste site to 125 m downstream
3.2 Calculate the water level in the Vejen river, 1 km downstream from the waste site
3.3 Flushing of NO3 from an aquifer
3.4 Retardation and isotherm slope
3.5 Analytical modeling of column elution
3.6 Retardation of a sharp front
3.7 Recalculate 10 ppm As in sand to solute concentration in mg/L pore water
3.8 Travel time of diuron in a soil
3.9 Calculation of a diffusion profile
3.10 Diffusive flux through a clay barrier (after Johnson et al., 1989)
3.11 Chloride isotope fractionation during diffusion
3.12 Dispersion coefficient from a single shot input
3.13 Front dispersion in a column
3.14 Pollutant spreading during transport in an aquifer
3.15 Longitudinal dispersivity in the Borden aquifer

4.1 Gypsum addition to high fluor groundwater
4.2 Calculate ionic strength and ion activity coefficients
4.3 Solubility of gypsum
4.4 Calculation of solubility products from Gibbs free energy data
4.5 Temperature dependency of the solubility product
4.6 Calculate the speciation of a water analysis using PHREEQC
4.7 Solubility of quartz at 150°C
4.8 Equilibrate a water sample with minerals
4.9 Ideal solid solution of Cd2+ in calcite
4.10 Non-ideal solid solution of Cu2+ in calcite
4.11 Miscibility gap in the solid solution
4.12 Oxidation of Fe(2)
4.13 Dissolution of hydroxyapatite; transport or surface reaction controlled?

5.1 Calculate TIC in water
5.2 Calculation of the aqueous carbonate mass balance
5.3 Manual calculation of carbonate
5.4 PHREEQC calculation of TIC
5.5 Calculate mixing effects
5.6 PHREEQC calculation of TIC
5.7 Propagation of the carbonate
5.8 Dissolution of dolomite
5.9 Kinetic dissolution of calcite
5.10 PHREEQC calculation of TIC
5.11 PHREEQC calculation of TIC
5.12 Groundwater age from 14C
5.13 Estimate exchangeable calcium
5.14 Estimate the retardation of TIC

6.1 Recalculate CEC (meq/kg)
6.2 Structural charge of smectite
6.3 Exchange coefficients as a function of pH
6.4 Calculate the cation exchange capacity
6.5 Calculate the cation exchange capacity
6.6 Calculate the cation exchange capacity
6.7 Simulate the analytical measurements
6.8 Flushing of an exchange column
6.9 The water composition after exchange
6.10 Flushing of K+ from a column
6.11 PHREEQC model for Valley Water
6.12 Calculate the surface potential
6.13 Calculation of the Exchange
6.14 Calculation of SAR adjustment

7.1 Freundlich sorption isotherm
7.2 Estimate the distribution coefficient
7.3 Distribution coefficient for Fe(3)
7.4 Exchange coefficient of Cu2+
7.5 Calculate the specific capacitance
7.6 Calculate the surface potential
7.7 Calculate the equivalent ion
7.8 Recalculate sites/nm² to m−2
7.9 Sorption of Cd2+ to iron oxides
7.10 Estimate the spherical sorption
7.11 Sorption of Cd2+ to organic matter
7.12 Calculate heavy metal remobilization

8.1 Incongruent dissolution of dolomite
8.2 Mass balance and the water
8.3 Mass balance calculation of Fe
8.4 Dissolution kinetics of K-feldspar
8.5 Acid groundwater formation
8.6 Modeling acidification with PHREEQC

9.1 Calculation of redox potential
9.2 Calculate EP from ΔG₀
4.14 Dissolution rate of quartz
4.15 Kinetic dissolution of quartz with PHREEQC

5.1 Calculate TIC in water for a fixed CO₂ pressure
5.2 Calculation of the aqueous carbonate system with PHREEQC
5.3 Manual calculation of carbonate speciation and SIcalcite
5.4 PHREEQC calculation of carbonate speciation and SIcalcite
5.5 Calculate mixing effects on calcite saturation state with PHREEQC
5.6 PHREEQC calculation of open and closed system calcite dissolution
5.7 Propagation of the calcite dissolution front in the Romano aquifer
5.8 Dissolution of dolomite in the Italian Dolomites
5.9 Kinetic dissolution of calcite calculated with PHREEQC, comparing simplified and parent "PWP" rates
5.10 PHREEQC calculation of δ13C during calcite dissolution
5.11 PHREEQC calculation of 14C evolution during dedolomitization
5.12 Groundwater age from 14C
5.13 Estimate exchangeable carbonate on Chalk and the retardation of 14C
5.14 Estimate the retardation of 14C by matrix diffusion

6.1 Recalculate CEC (meq/kg soil) to concentration (meq/L pore water)
6.2 Structural charge of smectite
6.3 Exchange coefficients as a function of solution normality
6.4 Calculate the cation exchange complex in equilibrium with groundwater
6.5 Calculate the exchanger composition in contact with groundwater, using PHREEQC
6.6 Calculate the exchanger composition, using the Rothmund-Kohnfeld equation
6.7 Simulate the analytical measurement of exchangeable cations
6.8 Flushing of an exchange complex
6.9 The water composition after passage of a salinity front during freshening
6.10 Flushing of K⁺ from a column
6.11 PHREEQC model for Valocchi’s field injection experiment
6.12 Calculate the surface potential on montmorillonite
6.13 Calculation of the Exchangeable Sodium Ratio (ESR)
6.14 Calculation of SAR adjusted for calcite precipitation

7.1 Freundlich sorption isotherm for Cd²⁺ on loamy sand
7.2 Estimate the distribution coefficient of Cd²⁺
7.3 Distribution coefficient for Sr²⁺
7.4 Exchange coefficient of Cd²⁺ vs Na⁺ on montmorillonite
7.5 Calculate the specific capacitance of a γ-Al₂O₃ surface
7.6 Calculate the surface potential on γ-Al₂O₃
7.7 Calculate the equivalent ionic strength for a constant capacity model
7.8 Recalculate sites/nm² to mol/L
7.9 Sorption of Cd²⁺ to iron oxyhydroxide in loamy sand
7.10 Estimate the spherical surface area of a fulvic acid
7.11 Sorption of Cd²⁺ to organic matter in loamy sand
7.12 Calculate heavy metal removal from groundwater with aeration and filtration

8.1 Incongruent dissolution of K-feldspar
8.2 Mass balance and the water chemistry of the Sierra Nevada (USA)
8.3 Mass balance calculation of mineral weathering using PHREEQC
8.4 Dissolution kinetics of K-feldspar as calculated by PHREEQC
8.5 Acid groundwater formation and gibbsite buffering
8.6 Modeling acidification with PHREEQC
8.7 Calculate the specific capacitance of an Al₂O₃surface
8.8 Estimate the spherical surface area of a fulvic acid
8.9 Sorption of Cd²⁺ to iron oxyhydroxide in loamy sand
8.10 Calculate heavy metal removal from groundwater with aeration and filtration

9.1 Calculation of redox speciation with the Nernst equation
9.2 Calculate E° from ΔG°
9.3 Calculation of redox speciation using the pe concept
9.4 Calculation of K from thermodynamic data
9.5 Oxidation of the atmosphere's N_2 content to nitrate
9.6 Calculation of redox zonation with PHREEQC
9.7 Applying Henry's law to oxygen dissolution
9.8 Compare oxygen flux and carbon productivity in a soil
9.9 Modeling gas loss during pyrite oxidation with oxygen
9.10 Construct a redox balance for nitrate reduction by organic matter oxidation
9.11 Reaction of benzene with iron-oxide and methanogenesis
9.12 pH buffering by pyrite and kinetically dissolving iron oxides

10.1 Estimate the flux of freon-11 (CCl_3F) into the sea
10.2 Retardation of Lindane and PCB
10.3 Calculate sorption and ion exchange of Quinoline with PHREEQC
10.4 Estimate the composition of a DNAPL pool in an aquifer
10.5 Model the extraction of a DNAPL pool with PHREEQC
10.6 Estimate the hazard of groundwater pollution by methyl bromide
10.7 PHREEQC model of phenol degradation
10.8 Xylene degradation with biomass growth
10.9 Speciation of EDTA in Glatt river water
10.10 Kinetic exchange of Fe(3)EDTA

11.1 Calculation of aquifer pollution by waste site leachate
11.2 A Pascal code to model Cl$^-$ diffusion from seawater into fresh water sediment
11.3 Implicit calculation of diffusion
11.4 Model the linear retardation of p-HCH in a laboratory column
11.5 Effect of the Freundlich exponent on breakthrough curves from a column

Notation

Greek characters

- α: Speciation factor, fraction
- δ: Solid solution fraction
- ϵ: Activity ratio
- ξ: Exchange factor between the activity ratio
- ϕ: Spatial weighting factor
- ϕ_I: Isotope fractionation
- ϕ_s: Solid solution fraction
- ϕ, ϕ_m: Equivalent fraction of ion
- ϕ_M: Molar fraction of ion
- ϕ_i: Activity-coefficient isotopic enrichment factor
- γ: Porosity, a fraction of water-filled porosity
- θ: Water content (g/g)
- ϵ_w: Water filled porosity, a mobile water filled porosity (g/m3)
- ϵ_m: Viscosity (g/m3)
- η: Tortuosity, the ratio of mobile water filled porosity
- $1/k$: Debye length (m)
- Λ_m: Molar electrical conductivity
- λ: Radioactive decay constant
- μ: Activity coefficient in air
- μ_M: Reduced mass (g/mol)
- μ_{max}: Specific degradation constant
- ρ: Stoichiometric coefficient
- ρ_p: Charge density (C/m3)
- ρ_m: Solid or liquid density
- ρ_i: Bulk density of solid (g/m3)
- ρ_p: Charge density at solid p
- σ_{DL}: Double layer charge (C/m3)
- σ_p: Activity-coefficient isotopic enrichment factor
- σ_I: Spatial weighting factor
- θ: Residence time (s)
- α_{180}: Isotope fractionation
- β_i: Equivalent fraction of ion
- γ_i: Activity-coefficient isotopic enrichment factor
- δ: Porosity, a fraction of water-filled porosity
- ϵ: Water content (g/g)
- μ_{max}: Reduced mass (g/mol)
- μ: Specific degradation constant
- ρ_p: Charge density (C/m3)
- ρ_m: Solid or liquid density
- ρ_i: Bulk density of solid (g/m3)
- ρ_p: Charge density at solid p
- σ_{DL}: Double layer charge (C/m3)
- σ_p: Activity-coefficient isotopic enrichment factor
- σ_I: Spatial weighting factor
- θ: Residence time (s)
- ϕ_m: Mobile fraction of porosity