DISPLACEMENT-BASED SEISMIC DESIGN OF STRUCTURES

M.J.N. PRIESTLEY
Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy

G.M. CALVI
Department of Structural Mechanics, Università degli Studi di Pavia, Pavia, Italy

M.J. KOWALSKY
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, USA

IUSS PRESS, Pavia, ITALY
CONTENTS

Preface

1 **Introduction: The Need for Displacement-Based Seismic Design**
 1.1 Historical Considerations
 1.2 Force-Based Seismic Design
 1.3 Problems with Force-Based Seismic Design
 1.3.1 Interdependency of Strength and Stiffness
 1.3.2 Period Calculation
 1.3.3 Ductility Capacity and Force-Reduction Factors
 1.3.4 Ductility of Structural Systems
 1.3.5 Relationship between Strength and Ductility Demand
 1.3.6 Structural Wall Buildings with Unequal Wall Lengths
 1.3.7 Structures with Dual (Elastic and Inelastic) Load Paths
 1.3.8 Relationship between Elastic and Inelastic Displacement Demand
 1.3.9 Summary
 1.4 Development of Displacement-Based Design Methods
 1.4.1 Force-Based/Displacement Checked
 1.4.2 Deformation-Calculation Based Design
 1.4.3 Deformation-Specification Based Design
 1.4.4 Choice of Design Approach
 1.5 Seismic Input for Displacement-Based Design
 2.1 Introduction: Characteristics of Accelerograms
 2.2 Response Spectra
 2.2.1 Response Spectra from Accelerograms
 2.2.2 Design Elastic Spectra
 2.2.3 Influence of Damping and Ductility on Spectral Displacement Response
 2.3 Choice of Accelerograms for Time History Analysis
 2.4 Direct Displacement-Based Design: Fundamental Considerations
 3.1 Introduction
 3.2 Basic Formulation of the Method

v
<table>
<thead>
<tr>
<th>3.2.1</th>
<th>Example 3.1 Basic DDBD</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Design Limit States and Performance Levels</td>
<td>67</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Section Limit States</td>
<td>69</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Structure Limit States</td>
<td>70</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Selection of Design Limit State</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Single-Degree-of-Freedom Structures</td>
<td>73</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Design Displacement for a SDOF structure</td>
<td>73</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Yield Displacement</td>
<td>75</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Equivalent Viscous Damping</td>
<td>76</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Design Base Shear Equation</td>
<td>90</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Design Example 3.3: Design of a Simple Bridge Pier</td>
<td>91</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Design When the Displacement Capacity Exceeds the Spectral Demand</td>
<td>92</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Example 3.4: Base Shear for a Flexible Bridge Pier</td>
<td>93</td>
</tr>
<tr>
<td>3.5</td>
<td>Multi-Degree-of-Freedom Structures</td>
<td>95</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Design Displacement</td>
<td>96</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Displacement Shapes</td>
<td>97</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Effective Mass</td>
<td>99</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Equivalent Viscous Damping</td>
<td>100</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Example 3.5: Effective Damping for a Cantilever Wall Building</td>
<td>103</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Distribution of Design Base Shear Force</td>
<td>104</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Analysis of Structure under Design Forces</td>
<td>105</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Design Example 3.6: Design moments for a Cantilever Wall Building</td>
<td>106</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Design Example 3.7: Serviceability Design for a Cantilever Wall Building</td>
<td>108</td>
</tr>
<tr>
<td>3.6</td>
<td>P-Δ Effects</td>
<td>111</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Current Design Approaches</td>
<td>111</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Theoretical Considerations</td>
<td>112</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Design Recommendations for Direct Displacement-based Design</td>
<td>114</td>
</tr>
<tr>
<td>3.7</td>
<td>Combination of Seismic and Gravity Actions</td>
<td>115</td>
</tr>
<tr>
<td>3.7.1</td>
<td>A Discussion of Current Force-Based Design Approaches</td>
<td>115</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Combination of Gravity and Seismic Moments in Displacement-Based Design</td>
<td>119</td>
</tr>
<tr>
<td>3.8</td>
<td>Consideration of Torsional Response in Direct Displacement-Based Design</td>
<td>120</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Torsional Response of Inelastic Eccentric Structures</td>
<td>122</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Design to Include Torsional Effects</td>
<td>124</td>
</tr>
<tr>
<td>3.9</td>
<td>Capacity Design for Direct Displacement-Based Design</td>
<td>125</td>
</tr>
<tr>
<td>3.10</td>
<td>Some Implications of DDBD</td>
<td>127</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Influence of Seismic Intensity on Design Base Shear Strength</td>
<td>127</td>
</tr>
</tbody>
</table>
3.10.2 Influence of Building Height on Required Frame Base Shear Strength
3.10.3 Bridge with Piers of Different Height
3.10.4 Building with Unequal Wall Lengths

4 Analysis Tools for Direct Displacement-Based Design

4.1 Introduction
4.2 Force-Displacement Response of Reinforced Concrete Members
4.2.1 Moment-Curvature Analysis
4.2.2 Concrete Properties for Moment-Curvature Analysis
4.2.3 Masonry Properties for Moment-Curvature Analyses
4.2.4 Reinforcing Steel Properties for Moment-Curvature Analyses
4.2.5 Strain Limits for Moment-Curvature Analysis
4.2.6 Material Design Strengths for Direct Displacement-Based Design
4.2.7 Bilinear Idealization of Concrete Moment-Curvature Curves
4.2.8 Force-Displacement Response from Moment-Curvature
4.2.9 Computer Program for Moment-Curvature and Force-Displacement

4.3 Force-Displacement Response of Steel Members

4.4 Elastic Stiffness of Cracked Concrete Sections
4.4.1 Circular Concrete Columns
4.4.2 Rectangular Concrete Columns
4.4.3 Walls
4.4.4 Flanged Reinforced Concrete Beams
4.4.5 Steel Beam and Column Sections
4.4.6 Storey Yield Drift of Frames
4.4.7 Summary of Yield Deformations

4.5 Analyses Related to Capacity Design Requirements
4.5.1 Design Example 4.1: Design and Overstrength of a Bridge Pier Based on Moment-Curvature Analysis
4.5.2 Default Overstrength Factors
4.5.3 Dynamic Amplification (Higher Mode Effects)

4.6 Equilibrium Considerations in Capacity Design

4.7 Dependable Strength of Capacity Protected Actions
4.7.1 Flexural Strength
4.7.2 Beam/Column Joint Shear Strength
4.7.3 Shear Strength of Concrete Members: Modified UCSD model
4.7.4 Design Example 4.2: Shear Strength of a Circular Bridge Column
4.7.5 Shear Strength of Reinforced Concrete and Masonry Walls
4.7.6 Response to Seismic Intensity Levels Exceeding the Design Level
4.8 Shear Flexibility of Concrete Members
4.8.1 Computation of Shear Deformations
4.8.2 Design Example 4.3 Shear Deformation, and Failure Displacement of a Circular Column
4.9 Analysis Tools for Design Response Verification
4.9.1 Introduction
4.9.2 Inelastic Time-History Analysis for Response Verification
4.9.3 Non-Linear Static (Pushover) Analysis

5 Frame Buildings
5.1 Introduction
5.2 Review of Basic DDBD Process for Frame Buildings
5.2.1 SDOF Representation of MDOF Frame
5.2.2 Design Actions for MDOF Structure from SDOF Base Shear Force
5.2.3 Design Inelastic Displacement Mechanism for Frames
5.3 Yield Displacements of Frames
5.3.1 Influence on Design Ductility Demand
5.3.2 Elastically Responding Frames
5.3.3 Yield Displacement of Irregular Frames
5.3.4 Design Example 5.1: Yield Displacement and Damping of an Irregular Frame
5.3.5 Yield Displacement and Damping when Beam Depth is Reduced with Height
5.3.6 Yield Displacement of Steel Frames
5.4 Controlling Higher Mode Drift Amplification
5.5 Structural Analysis Under Lateral Force Vector
5.5.1 Analysis Based on Relative Stiffness of Members
5.5.2 Analysis Based on Equilibrium Considerations
5.6 Section Flexural Design Considerations
5.6.1 Beam Flexural Design
5.6.2 Column Flexural Design
5.7 Direct Displacement-Based Design of Frames for Diagonal Excitation
5.8 Capacity Design for Frames
5.8.1 General Requirements
5.8.2 Beam Flexure
5.8.3 Beam Shear
5.8.4 Column Flexure
5.8.5 Column Shear
5.9 Design Verification
5.9.1 Displacement Response
5.9.2 Column Moments
5.9.3 Column Shears

Contents

5.10 Design Irregularities
5.11 Precast Columns
5.12 Masonry Structures
5.13 Steel Structures
5.14 Design Verification

6 Structural Analysis
6.1 Introduction
6.1.1 Review of Basic Concepts
6.1.2 Wall Design
6.2 Review of Basic Concepts
6.3 Wall Design
6.4 Torsional Effects
6.5 Four-Story Frame Building

5.12 Masonry Structures
5.13 Steel Structures
5.14 Design Verification
5.9.4 Column Axial Forces 277
5.10 Design Example 5.2: Member Design Forces for an Irregular Two-Way Reinforced Concrete Frame 279
5.11 Precast Prestressed Frames 285
5.11.1 Seismic Behaviour of Prestressed Frames with Bonded Tendons 285
5.11.2 Prestressed Frames with Unbonded Tendons 287
5.11.3 Hybrid Precast Beams 290
5.11.4 Design Example 5.3: DDBD of a Hybrid Prestressed Frame Building including P-Δ Effects 293
5.12 Masonry Infilled Frames 301
5.12.1 Structural Options 301
5.12.2 Structural Action of Infill 302
5.12.3 DDBD of Infilled Frames 303
5.13 Steel Frames 304
5.13.1 Structural Options 304
5.13.2 Concentric Braced Frames 306
5.13.3 Eccentric Braced Frames 307
5.14 Design Example 5.4: Design Verification of Design Example 5.1/5.2 310

6 Structural Wall Buildings 313
6.1 Introduction: Some Characteristics of Wall Buildings 313
6.1.1 Section Shapes 313
6.1.2 Wall Elevations 315
6.1.3 Foundations for Structural Walls 315
6.1.4 Inertia Force Transfer into Walls 317
6.2 Review of Basic DDBD Process for Cantilever Wall Buildings 317
6.2.1 Design Storey Displacements 317
6.3 Wall Yield Displacements: Significance to Design 325
6.3.1 Influence on Design Ductility Limits 325
6.3.2 Elastically Responding Walls 327
6.3.3 Multiple In-Plane Walls 328
6.4 Torsional Response of Cantilever Wall Buildings 328
6.4.1 Elastic Torsional Response 328
6.4.2 Torsionally Unrestrained Systems 331
6.4.3 Torsionally Restrained Systems 334
6.4.4 Predicting Torsional Response 337
6.4.5 Recommendations for DDBD 339
6.4.6 Design Example 6.1: Torsionally Eccentric Building 346
6.4.7 Simplification of the Torsional Design Process 352
6.5 Foundation Flexibility Effects on Cantilever Walls 353
6.5.1 Influence on Damping 353
6.5.2 Foundation Rotational Stiffness 354
6.6 Capacity Design for Cantilever Walls
6.6.1 Modified Modal Superposition (MMS) for Design Forces in Cantilever Walls
6.6.2 Simplified Capacity Design for Cantilever Walls
6.7 Precast Prestressed Walls
6.8 Coupled Structural Walls
6.8.1 General Characteristics
6.8.2 Wall Yield Displacement
6.8.3 Coupling Beam Yield Drift
6.8.4 Wall Design Displacement
6.8.5 Equivalent Viscous Damping
6.8.6 Summary of Design Process
6.8.7 Design Example 6.3: Design of a Coupled-Wall Building

7 Dual Wall-Frame Buildings
7.1 Introduction
7.2 DDBD Procedure
7.2.1 Preliminary Design Choices
7.2.2 Moment Profiles for Frames and Walls
7.2.3 Moment Profiles when Frames and Walls are Connected by Link Beams
7.2.4 Displacement Profiles
7.2.5 Equivalent Viscous Damping
7.2.6 Design Base Shear Force
7.2.7 Design Results Compared with Time History Analyses
7.3 Capacity Design for Wall-Frames
7.3.1 Reduced Stiffness Model for Higher Mode Effects
7.3.2 Simplified Estimation of Higher Mode Effects for Design
7.4 Design Example 7.1: Twelve Storey Wall-Frame Building
7.4.1 Design Data
7.4.2 Transverse Direction Design
7.4.3 Longitudinal Direction Design
7.4.4 Comments on the Design

8 Masonry Buildings
8.1 Introduction: Characteristics of Masonry Buildings
8.1.1 General Considerations
8.1.2 Material Types and Properties
8.2 Typical Damage and Failure Modes
8.2.1 Walls
8.2.2 Coupling of Masonry Walls by Slabs, Beams or Masonry Spandrels
8.3 Design Process for Masonry Buildings

9 Timber Structures
9.1 Introduction
9.2 Design of timber Structures
9.3 Design of Timber Buildings
9.4 Case Studies

10 Bridges
10.1 Introduction
10.2 Design of Bridges
10.3 Design of Trusses
10.4 Design of Suspended Bridges

8.4.2
8.4.3
8.4.4
3-D Bridges

8.3.1
8.3.2
8.3.3

3-D Bridges

3-D Bridges
8.3.1 Masonry Coupled Walls Response 429
8.3.2 Design of Unreinforced Masonry Buildings 432
8.3.3 Design of Reinforced Masonry Buildings 439
8.4 3-D Response of Masonry Buildings 446
8.4.1 Torsional Response 446
8.4.2 Out-of-Plane Response of Walls 449

9 Timber Structures 455
9.1 Introduction: Timber Properties 457
9.2 Ductile Timber Structures for Seismic Response 460
9.2.1 Ductile Moment-Resisting Connections in Frame Construction 457
9.2.2 Timber Framing with Plywood Shear Panels 460
9.2.3 Hybrid Prestressed Timber Frames 461
9.3 DDBD Process for Timber Structures 462
9.4 Capacity Design of Timber Structures 463

10 Bridges 465
10.1 Introduction: Special Characteristics of Bridges 465
10.1.1 Pier Section Shapes 465
10.1.2 The Choice between Single-column and Multi-column Piers 467
10.1.3 Bearing-Supported vs. Monolithic Pier/Superstructure Connection 467
10.1.4 Soil-Structure Interaction 468
10.1.5 Influence of Abutment Design 470
10.1.6 Influence of Movement Joints 470
10.1.7 Multi-Span Long Bridges 470
10.1.8 P-Δ Effects for Bridges 471
10.1.9 Design Verification by Inelastic Time-History Analyses 471
10.2 Review of Basic DDBD Equations for Bridges 471
10.3 Design Process for Longitudinal Response 472
10.3.1 Pier Yield Displacement 472
10.3.2 Design Displacement for Footing-Supported Piers 478
10.3.3 Design Example 10.1: Design Displacement for a Footing-Supported Column 481
10.3.4 Design Displacement for Pile/Columns 483
10.3.5 Design Example 10.2: Design Displacement for a Pile/Column 484
10.3.6 System Damping for Longitudinal Response 485
10.3.7 Design Example 10.3: Longitudinal Design of a Four Span Bridge 489
10.4 Design Process for Transverse Response 494
10.4.1 Displacement Profiles 495
10.4.2 Dual Seismic Load Paths 498
10.4.3 System Damping 498
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.4</td>
<td>Design Example 10.4: Damping for the Bridge of Fig. 10.17</td>
<td>500</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Degree of Fixity at Column Top</td>
<td>502</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Design Procedure</td>
<td>503</td>
</tr>
<tr>
<td>10.4.7</td>
<td>Relative Importance of Transverse and Longitudinal Response</td>
<td>505</td>
</tr>
<tr>
<td>10.4.8</td>
<td>Design Example 10.5: Transverse Design of a Four-Span Bridge</td>
<td>507</td>
</tr>
<tr>
<td>10.5</td>
<td>Capacity Design Issues</td>
<td>512</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Capacity Design for Piers</td>
<td>512</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Capacity Design for Superstructures and Abutments</td>
<td>513</td>
</tr>
<tr>
<td>10.6</td>
<td>Design Example 10.6: Design Verification of Design Example 10.5</td>
<td>516</td>
</tr>
<tr>
<td>11</td>
<td>Structures with Isolation and Added Damping</td>
<td>519</td>
</tr>
<tr>
<td>11.1</td>
<td>Fundamental Concepts</td>
<td>519</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Objectives and Motivations</td>
<td>519</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Bearing Systems, Isolation and Dissipation Devices</td>
<td>522</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Design Philosophy/Performance Criteria</td>
<td>523</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Problems with Force - Based Design of Isolated Structures</td>
<td>524</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Capacity Design Concepts Applied to Isolated Structures</td>
<td>526</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Alternative Forms of Artificial Isolation/Dissipation</td>
<td>527</td>
</tr>
<tr>
<td>11.1.7</td>
<td>Analysis and Safety Verification</td>
<td>528</td>
</tr>
<tr>
<td>11.2</td>
<td>Bearing Systems, Isolation and Dissipation Devices</td>
<td>529</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Basic Types of Devices</td>
<td>529</td>
</tr>
<tr>
<td>11.2.2</td>
<td>"Non-Seismic" Sliding Bearings</td>
<td>530</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Isolating Bearing Devices</td>
<td>531</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Dissipative systems</td>
<td>544</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Heat Problems</td>
<td>554</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Structural Rocking as a Form of Base Isolation</td>
<td>557</td>
</tr>
<tr>
<td>11.3</td>
<td>Displacement-Based Design of Isolated Structures</td>
<td>559</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Base-Isolated Rigid Structures</td>
<td>559</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Base-Isolated Flexible Structures</td>
<td>571</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Controlled Response of Complex Structures</td>
<td>579</td>
</tr>
<tr>
<td>11.4</td>
<td>Design Verification of Isolated Structures</td>
<td>596</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Design Example 11.7: Design Verification of Design Example 11.3</td>
<td>596</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Design Example 11.8: Design Verification of Design Example 11.5</td>
<td>597</td>
</tr>
<tr>
<td>12</td>
<td>Wharves and Piers</td>
<td>599</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>599</td>
</tr>
<tr>
<td>12.2</td>
<td>Structural Details</td>
<td>601</td>
</tr>
<tr>
<td>12.3</td>
<td>The Design Process</td>
<td>602</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Factors Influencing Design</td>
<td>602</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Biaxial Excitation of Marginal Wharves</td>
<td>603</td>
</tr>
<tr>
<td>13</td>
<td>Displacement-Related Issues</td>
<td>599</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>599</td>
</tr>
<tr>
<td>13.2</td>
<td>Design</td>
<td>601</td>
</tr>
<tr>
<td>13.3</td>
<td>Design</td>
<td>602</td>
</tr>
<tr>
<td>14</td>
<td>Draft Disposition</td>
<td>603</td>
</tr>
</tbody>
</table>

Contents

10.4.4 Design Example 10.4: Damping for the Bridge of Fig. 10.17 | 500 |
10.4.5 Degree of Fixity at Column Top | 502 |
10.4.6 Design Procedure | 503 |
10.4.7 Relative Importance of Transverse and Longitudinal Response | 505 |
10.4.8 Design Example 10.5: Transverse Design of a Four-Span Bridge | 507 |
10.5 Capacity Design Issues | 512 |
10.5.1 Capacity Design for Piers | 512 |
10.5.2 Capacity Design for Superstructures and Abutments | 513 |
10.6 Design Example 10.6: Design Verification of Design Example 10.5 | 516 |
11 Structures with Isolation and Added Damping | 519 |
11.1 Fundamental Concepts | 519 |
11.1.1 Objectives and Motivations | 519 |
11.1.2 Bearing Systems, Isolation and Dissipation Devices | 522 |
11.1.3 Design Philosophy/Performance Criteria | 523 |
11.1.4 Problems with Force - Based Design of Isolated Structures | 524 |
11.1.5 Capacity Design Concepts Applied to Isolated Structures | 526 |
11.1.6 Alternative Forms of Artificial Isolation/Dissipation | 527 |
11.1.7 Analysis and Safety Verification | 528 |
11.2 Bearing Systems, Isolation and Dissipation Devices | 529 |
11.2.1 Basic Types of Devices | 529 |
11.2.2 "Non-Seismic" Sliding Bearings | 530 |
11.2.3 Isolating Bearing Devices | 531 |
11.2.4 Dissipative systems | 544 |
11.2.5 Heat Problems | 554 |
11.2.6 Structural Rocking as a Form of Base Isolation | 557 |
11.3 Displacement-Based Design of Isolated Structures | 559 |
11.3.1 Base-Isolated Rigid Structures | 559 |
11.3.2 Base-Isolated Flexible Structures | 571 |
11.3.3 Controlled Response of Complex Structures | 579 |
11.4 Design Verification of Isolated Structures | 596 |
11.4.1 Design Example 11.7: Design Verification of Design Example 11.3 | 596 |
11.4.2 Design Example 11.8: Design Verification of Design Example 11.5 | 597 |
12 Wharves and Piers | 599 |
12.1 Introduction | 599 |
12.2 Structural Details | 601 |
12.3 The Design Process | 602 |
12.3.1 Factors Influencing Design | 602 |
12.3.2 Biaxial Excitation of Marginal Wharves | 603 |
13 Displacement-Related Issues | 599 |
13.1 Introduction | 599 |
13.2 Design | 601 |
13.3 Design | 602 |
14 Draft Disposition | 603 |

References

Symbols List

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.3</td>
<td>Sequence of Design Operations</td>
<td>604</td>
</tr>
<tr>
<td>12.4</td>
<td>Port of Los Angeles Performance Criteria</td>
<td>608</td>
</tr>
<tr>
<td>12.4.1</td>
<td>POLA Earthquake Levels and Performance Criteria</td>
<td>609</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Performance Criteria for Prestressed Concrete Piles</td>
<td>609</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Performance Criteria for Seismic Design of Steel Pipe Piles</td>
<td>611</td>
</tr>
<tr>
<td>12.5</td>
<td>Lateral Force-Displacement Response of Prestressed Piles</td>
<td>612</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Prestressed Pile Details</td>
<td>612</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Moment-Curvature Characteristics of Pile/Deck Connection</td>
<td>613</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Moment-Curvature Characteristics of Prestressed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pile In-Ground Hinge</td>
<td>618</td>
</tr>
<tr>
<td>12.5.4</td>
<td>Inelastic Static Analysis of a Fixed Head Pile</td>
<td>621</td>
</tr>
<tr>
<td>12.6</td>
<td>Design Verification</td>
<td>628</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Eccentricity</td>
<td>628</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Inelastic Time History Analysis</td>
<td>630</td>
</tr>
<tr>
<td>12.7</td>
<td>Capacity Design and Equilibrium Considerations</td>
<td>634</td>
</tr>
<tr>
<td>12.7.1</td>
<td>General Capacity Design Requirements</td>
<td>634</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Shear Key Forces</td>
<td>638</td>
</tr>
<tr>
<td>12.8</td>
<td>Design Example 12.1: Initial Design of a Two-Segment Marginal Wharf</td>
<td>639</td>
</tr>
<tr>
<td>12.9</td>
<td>Aspects of Pier Response</td>
<td>645</td>
</tr>
<tr>
<td>13</td>
<td>Displacement-Based Seismic Assessment</td>
<td>647</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction: Current Approaches</td>
<td>647</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Standard Force-Based Assessment</td>
<td>649</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Equivalent Elastic Strength Assessment</td>
<td>649</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Incremental Non-linear Time History Analysis</td>
<td>650</td>
</tr>
<tr>
<td>13.2</td>
<td>Displacement-Based Assessment of SDOF Structures</td>
<td>653</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Alternative Assessment Procedures</td>
<td>653</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Incorporation of P-A Effects in Displacement-Based</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>13.2.3</td>
<td>Assessment Example 13.1: Simple Bridge Column under Transverse</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>Response</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>Displacement-Based Assessment of MDOF Structures</td>
<td>659</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Frame Buildings</td>
<td>661</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Assessment Example 2: Assessment of a</td>
<td>666</td>
</tr>
<tr>
<td></td>
<td>Reinforced Concrete Frame</td>
<td></td>
</tr>
<tr>
<td>13.3.3</td>
<td>Structural Wall Buildings</td>
<td>672</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Other Structures</td>
<td>676</td>
</tr>
<tr>
<td>14</td>
<td>Draft Displacement-Based Code for Seismic Design of Buildings</td>
<td>677</td>
</tr>
<tr>
<td>References</td>
<td>691</td>
<td></td>
</tr>
<tr>
<td>Symbols List</td>
<td>703</td>
<td></td>
</tr>
</tbody>
</table>
PREFACE

Performance-based seismic design is a relatively new approach to the design of buildings, with the objective of minimizing the effects of seismic events. In practice, it is based on the use of algorithms that calculate the probability of different levels of damage or collapse, which is often difficult to determine in advance for any given structure, especially for another type of structure.

Current research and practice are focused on the development of more reliable and accurate methods for determining seismic performance, especially for large and complex structures. However, the development of these methods is challenging and takes time, and there is a need for a more reliable and accurate method for determining the seismic performance of structures.

This book presents an overview of the current state of research and practice in performance-based seismic design, with a focus on the use of displacement-based methods. The book is divided into two main parts: the first part provides an introduction to the basic concepts and principles of performance-based seismic design, while the second part presents case studies of the application of these methods in the design of structures.