KARL-EUGEN KURRER

The History of the Theory of Structures
From Arch Analysis to Computational Mechanics
Contents

5 Foreword
9 Preface
11 Preface to the first, German edition

20 1 The tasks and aims of a historical study of theory of structures
21 1.1 Internal scientific tasks
25 1.2 Practical engineering tasks
26 1.3 Didactic tasks
27 1.4 Cultural tasks
28 1.5 Aims
28 1.6 An invitation to a journey through the history of theory of structures

30 2 Learning from the history of structural analysis: 11 introductory essays
31 2.1 What is structural analysis?
31 2.1.1 Preparatory period (1575–1825)
34 2.1.2 Discipline-formation period (1825–1900)
37 2.1.3 Consolidation period (1900–1950)
39 2.1.4 Integration period (1950 to date)
41 2.2 From the lever to the truss
42 2.2.1 Lever principle according to Archimedes
43 2.2.2 The principle of virtual displacements
43 2.2.3 The general law of work
44 2.2.4 The principle of virtual forces
44 2.2.5 The parallelogram of forces
45 2.2.6 From Newton to Lagrange
46 2.2.7 Kinematic or geometric view of statics?
46 2.2.8 Stable or unstable, determinate or indeterminate?
47 2.2.9 Syntheses in statics
50 2.3 The development of higher engineering education
51 2.3.1 The specialist and military schools of the ancien régime
Science and enlightenment
Science and education during the French Revolution (1789–1794)
Monge's teaching plan for the École Polytechnique
Austria, Germany and Russia in the wake of the École Polytechnique
The education of engineers in the United States
Insights into bridge-building and theory of structures in the 19th century
Suspension bridges
Timber bridges
Composite systems
The Göltzsch and Elster viaducts (1845–1851)
The Britannia Bridge (1846–1850)
The first Dirschau Bridge over the River Weichsel (1850–1857)
The Garabit Viaduct (1880–1884)
Bridge engineering theories
The industrialisation of steel bridge-building between 1850 and 1900
Germany and Great Britain
France
United States of America
Influence lines
Railway trains and bridge-building
Evolution of the influence line concept
The beam on elastic supports
The Winkler bedding
The theory of the permanent way
From permanent way theory to the theory of the beam on elastic supports
Displacement method
Analysis of a triangular frame
Comparing the displacement method and trussed framework theory for frame-type systems
Second-order theory
Josef Melan's contribution
Suspension bridges become stiffer
Arch bridges become more flexible
The differential equation for laterally loaded struts and ties
The integration of second-order theory into the displacement method
Why do we need fictitious forces?
Ultimate load method
First approaches
Foundation of the ultimate load method
The paradox of the plastic hinge method
The acceptance of the ultimate load method
Structural law – Static law – Formation law
The five Platonic bodies
Beauty and law
The first fundamental engineering science disciplines: theory of structures and applied mechanics

What is engineering science?

First approximation

Raising the status of engineering sciences through philosophical discourse

Engineering and engineering sciences

Revoking the encyclopaedic in the system of classical engineering sciences: five case studies from applied mechanics and theory of structures

On the topicality of the encyclopaedic

Franz Joseph Ritter von Gerstner's contribution to the mathematisation of construction theories

Weisbach's encyclopaedia of applied mechanics

Rankine's Manuals, or the harmony between theory and practice

Föppl's Vorlesungen über technische Mechanik

The Handbuch der Ingenieurwissenschaften as an encyclopaedia of classical civil engineering theory

From masonry arch to elastic arch

The geometrical thinking behind the theory of masonry arch bridges

The Ponte S. Trinità in Florence

Establishing the new thinking in bridge-building practice using the example of Nuremberg's Fleisch Bridge

From the wedge to the masonry arch – or: the addition theorem of wedge theory

Between mechanics and architecture: masonry arch theory at the Académie Royale d'Architecture de Paris (1687–1718)

La Hire and Béjidor

Epigones

From the analysis of masonry arch collapse mechanisms to voussoir rotation theory

Baldi

Fabri

La Hire

Couplet

Bridge-building – empiricism still reigns

Coułomb's voussoir rotation theory

Monasterio's Nueva Teórica

The line of thrust theory

Gerstner

The search for the true line of thrust

The breakthrough for elastic theory

The dualism of masonry arch and elastic arch theory under Navier

Two steps forwards, one back

From Poncelet to Winkler

A step back
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>4.5.5</td>
<td>The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory</td>
</tr>
<tr>
<td>232</td>
<td>4.6</td>
<td>Ultimate load theory for masonry arches</td>
</tr>
<tr>
<td>234</td>
<td>4.6.1</td>
<td>Of cracks and the true line of thrust in the masonry arch</td>
</tr>
<tr>
<td>235</td>
<td>4.6.2</td>
<td>Masonry arch failures</td>
</tr>
<tr>
<td>236</td>
<td>4.6.3</td>
<td>The maximum load principles of the ultimate load theory for masonry arches</td>
</tr>
<tr>
<td>236</td>
<td>4.6.4</td>
<td>The safety of masonry arches</td>
</tr>
<tr>
<td>238</td>
<td>4.6.5</td>
<td>Analysis of a masonry arch railway bridge</td>
</tr>
<tr>
<td>241</td>
<td>4.7</td>
<td>The finite element method</td>
</tr>
<tr>
<td>243</td>
<td>4.8</td>
<td>On the epistemological status of masonry arch theories</td>
</tr>
<tr>
<td>245</td>
<td>4.8.1</td>
<td>Wedge theory</td>
</tr>
<tr>
<td>245</td>
<td>4.8.2</td>
<td>Collapse mechanism analysis and voussoir rotation theory</td>
</tr>
<tr>
<td>246</td>
<td>4.8.3</td>
<td>Line of thrust theory and elastic theory for masonry arches</td>
</tr>
<tr>
<td>248</td>
<td>4.8.4</td>
<td>Ultimate load theory for masonry arches as an object in the historical theory of structures</td>
</tr>
<tr>
<td>248</td>
<td>4.8.5</td>
<td>The finite element analysis of masonry arches</td>
</tr>
<tr>
<td>250</td>
<td>5</td>
<td>The beginnings of a theory of structures</td>
</tr>
<tr>
<td>252</td>
<td>5.1</td>
<td>What is the theory of strength of materials?</td>
</tr>
<tr>
<td>255</td>
<td>5.2</td>
<td>On the state of development of structural design and strength of materials in the Renaissance</td>
</tr>
<tr>
<td>260</td>
<td>5.3</td>
<td>Galileo’s Dialogue</td>
</tr>
<tr>
<td>261</td>
<td>5.3.1</td>
<td>First day</td>
</tr>
<tr>
<td>264</td>
<td>5.3.2</td>
<td>Second day</td>
</tr>
<tr>
<td>270</td>
<td>5.4</td>
<td>Developments in the strength of materials up to 1750</td>
</tr>
<tr>
<td>277</td>
<td>5.5</td>
<td>Civil engineering at the close of the 18th century</td>
</tr>
<tr>
<td>279</td>
<td>5.5.1</td>
<td>Franz Joseph Ritter von Gerstner</td>
</tr>
<tr>
<td>283</td>
<td>5.5.2</td>
<td>Introduction to structural engineering</td>
</tr>
<tr>
<td>289</td>
<td>5.5.3</td>
<td>Four comments on the significance of Gerstner’s Einleitung in die statische Baukunst for theory of structures</td>
</tr>
<tr>
<td>290</td>
<td>5.6</td>
<td>The formation of a theory of structures: Eytelwein and Navier</td>
</tr>
<tr>
<td>291</td>
<td>5.6.1</td>
<td>Navier</td>
</tr>
<tr>
<td>294</td>
<td>5.6.2</td>
<td>Eytelwein</td>
</tr>
<tr>
<td>296</td>
<td>5.6.3</td>
<td>The analysis of the continuous beam according to Eytelwein and Navier</td>
</tr>
<tr>
<td>306</td>
<td>6</td>
<td>The discipline-formation period of theory of structures</td>
</tr>
<tr>
<td>308</td>
<td>6.1</td>
<td>Clapeyron’s contribution to the formation of classical engineering sciences</td>
</tr>
<tr>
<td>308</td>
<td>6.1.1</td>
<td>Les Polytechniciens: the fascinating revolutionary élan in post-revolution France</td>
</tr>
<tr>
<td>310</td>
<td>6.1.2</td>
<td>Clapeyron and Lamé in St. Petersburg (1820–1831)</td>
</tr>
<tr>
<td>313</td>
<td>6.1.3</td>
<td>Clapeyron’s formulation of the energy doctrine of classical engineering sciences</td>
</tr>
<tr>
<td>314</td>
<td>6.1.4</td>
<td>Bridge-building and the theorem of three moments</td>
</tr>
<tr>
<td>317</td>
<td>6.2</td>
<td>From graphical statics to graphical analysis</td>
</tr>
<tr>
<td>318</td>
<td>6.2.1</td>
<td>The founding of graphical statics by Culmann</td>
</tr>
</tbody>
</table>
6.2.2 Rankine, Maxwell, Cauchy and Bow
6.2.3 Differences between graphical statics and graphical analysis
6.2.4 The breakthrough for graphical analysis
6.3 The classical phase of theory of structures
6.3.1 Winkler's contribution
6.3.2 The beginnings of the force method
6.3.3 Loadbearing structure as kinematic machine
6.4 Theory of structures at the transition from the discipline-formation to the consolidation period
6.4.1 Castigliano
6.4.2 The foundation of classical theory of structures
6.4.3 The dispute about the fundamentals of classical theory of structures is resumed
6.4.4 The validity of Castigliano's theorems
6.5 Lord Rayleigh's *The Theory of Sound* and Kirpichev's foundation of classical theory of structures
6.5.1 Rayleigh coefficient and Ritz coefficient
6.5.2 Kirpichev's congenial adaptation
6.6 The Berlin school of structural theory
6.6.1 The notion of the scientific school
6.6.2 The completion of classical theory of structures by Heinrich Müller-Breslau
6.6.3 Classical theory of structures takes hold of engineering design
6.6.4 Müller-Breslau's students

7.1 Torsion theory in iron construction and theory of structures from 1850 to 1900
7.1.1 Saint-Venant's torsion theory
7.1.2 The torsion problem in Weisbach's *Principles*
7.1.3 Bach's torsion tests
7.1.4 The adoption of torsion theory in classical theory of structures
7.2 Crane-building at the focus of mechanical and electrical engineering, structural steelwork and theory of structures
7.2.1 Rudolph Bredt – the familiar stranger
7.2.2 The Ludwig Stuckenholz company in Wetter a. d. Ruhr
7.2.3 Bredt's scientific-technical publications
7.2.4 The engineering industry adopts classical theory of structures
7.3 Torsion theory in the consolidation period of structural theory (1900–1950)
7.3.1 The introduction of an engineering science concept: the torsion constant
7.3.2 The discovery of the shear centre
7.3.3 Torsion theory in structural steelwork from 1925 to 1950
7.3.4 Summary
7.4 Searching for the true buckling theory in steel construction
7.4.1 The buckling tests of the DStV
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>448</td>
<td>7.4.2</td>
<td>German State Railways and the joint technical-scientific work in structural steelwork</td>
</tr>
<tr>
<td>449</td>
<td>7.4.3</td>
<td>Excursion: the Olympic Games for structural engineering</td>
</tr>
<tr>
<td>452</td>
<td>7.4.4</td>
<td>A paradigm change in buckling theory</td>
</tr>
<tr>
<td>452</td>
<td>7.4.5</td>
<td>The standardisation of the new buckling theory in the German stability standard DIN 4114</td>
</tr>
<tr>
<td>454</td>
<td>7.5</td>
<td>Steelwork and steelwork science from 1950 to 1975</td>
</tr>
<tr>
<td>456</td>
<td>7.5.1</td>
<td>From the truss to the plane frame: the orthotropic bridge deck</td>
</tr>
<tr>
<td>463</td>
<td>7.5.2</td>
<td>The rise of composite steel-concrete construction</td>
</tr>
<tr>
<td>469</td>
<td>7.5.3</td>
<td>Lightweight steel construction</td>
</tr>
<tr>
<td>471</td>
<td>7.6</td>
<td>Eccentric orbits – the disappearance of the centre</td>
</tr>
<tr>
<td>474</td>
<td>8</td>
<td>Member analysis conquers the third dimension: the spatial framework</td>
</tr>
<tr>
<td>475</td>
<td>8.1</td>
<td>Development of the theory of spatial frameworks</td>
</tr>
<tr>
<td>476</td>
<td>8.1.1</td>
<td>The original dome to the Reichstag (German parliament building)</td>
</tr>
<tr>
<td>478</td>
<td>8.1.2</td>
<td>Foundation of the theory of spatial frameworks by August Föppl</td>
</tr>
<tr>
<td>481</td>
<td>8.1.3</td>
<td>Integration of spatial framework theory into classic structural theory</td>
</tr>
<tr>
<td>485</td>
<td>8.2</td>
<td>Spatial frameworks in an era of technical reproducibility</td>
</tr>
<tr>
<td>486</td>
<td>8.2.1</td>
<td>Alexander Graham Bell</td>
</tr>
<tr>
<td>487</td>
<td>8.2.2</td>
<td>Vladimir Grigorievich Shukhov</td>
</tr>
<tr>
<td>487</td>
<td>8.2.3</td>
<td>Walther Bauersfeld and Franz Dischinger</td>
</tr>
<tr>
<td>489</td>
<td>8.2.4</td>
<td>Richard Buckminster Fuller</td>
</tr>
<tr>
<td>490</td>
<td>8.2.5</td>
<td>Max Mengeringhausen</td>
</tr>
<tr>
<td>491</td>
<td>8.3</td>
<td>Dialectic synthesis of individual structural composition and large-scale production</td>
</tr>
<tr>
<td>491</td>
<td>8.3.1</td>
<td>The MERO system and the composition law for spatial frameworks</td>
</tr>
<tr>
<td>494</td>
<td>8.3.2</td>
<td>Spatial frameworks and computers</td>
</tr>
<tr>
<td>496</td>
<td>9</td>
<td>Reinforced concrete’s influence on theory of structures</td>
</tr>
<tr>
<td>498</td>
<td>9.1</td>
<td>The first design methods in reinforced concrete construction</td>
</tr>
<tr>
<td>498</td>
<td>9.1.1</td>
<td>The beginnings of reinforced concrete construction</td>
</tr>
<tr>
<td>500</td>
<td>9.1.2</td>
<td>From the German Monier patent to the Monier-Broschüre</td>
</tr>
<tr>
<td>503</td>
<td>9.1.3</td>
<td>The Monier-Broschüre</td>
</tr>
<tr>
<td>511</td>
<td>9.2</td>
<td>Reinforced concrete revolutionises the building industry</td>
</tr>
<tr>
<td>512</td>
<td>9.2.1</td>
<td>The fate of the Monier system</td>
</tr>
<tr>
<td>514</td>
<td>9.2.2</td>
<td>The end of the system period: steel reinforcement + concrete = reinforced concrete</td>
</tr>
<tr>
<td>527</td>
<td>9.3</td>
<td>Theory of structures and reinforced concrete</td>
</tr>
<tr>
<td>528</td>
<td>9.3.1</td>
<td>New types of loadbearing structures in reinforced concrete</td>
</tr>
<tr>
<td>554</td>
<td>9.3.2</td>
<td>Prestressed concrete: Une révolution dans les techniques du béton (Freyssinet)</td>
</tr>
<tr>
<td>561</td>
<td>9.3.3</td>
<td>The paradigm change in reinforced concrete design takes place in the Federal Republic of Germany too</td>
</tr>
<tr>
<td>562</td>
<td>9.3.4</td>
<td>Revealing the invisible: reinforced concrete design with truss models</td>
</tr>
</tbody>
</table>
From classical to modern theory of structures

10.1 The relationship between text, image and symbol in theory of structures

10.1.1 The historical stages in the idea of formalization

10.1.2 The structural engineer – a manipulator of symbols?

10.2 The development of the displacement method

10.2.1 The contribution of the mathematical elastic theory

10.2.2 From pin-jointed trussed framework to rigid-jointed frame

10.2.3 From trussed framework to rigid frame

10.2.4 The displacement method gains emancipation from trussed framework theory

10.2.5 The displacement method during the invention phase of structural theory

10.3 The groundwork for automation in structural calculations

10.3.1 Remarks on the practical use of symbols in structural analysis

10.3.2 Rationalisation of structural calculation in the consolidation period of structural theory

10.3.3 The dual nature of theory of structures

10.3.4 First steps in the automation of structural calculations

10.3.5 The diffusion of matrix formulation into the exact natural sciences and fundamental engineering science disciplines

10.4 "The computer shapes the theory" (Argyris): the historical roots of the finite element method and the development of computational mechanics

10.4.1 Truss models for elastic continua

10.4.2 Modularisation and discretisation of aircraft structures

10.4.3 The matrix algebra reformulation of structural mechanics

10.4.4 FEM - formation of a general technology-engineering science theory

10.4.5 The founding of FEM through variational theorems

10.4.6 Computational mechanics – a broad field

10.4.7 A humorous plea

Twelve scientific controversies in mechanics and theory of structures

11.1 The scientific controversy

11.2 Twelve disputes

11.2.1 Galileo's Dialogo

11.2.2 Galileo's Discorsi

11.2.3 The philosophical dispute about the true measure of force

11.2.4 The dispute about the principle of least action

11.2.5 The dome of St. Peter's in the dispute between theorists and practitioners

11.2.6 Discontinuum or continuum?

11.2.7 Graphical statics versus graphical analysis, or the defence of pure theory

11.2.8 Animosity creates two schools: Mohr versus Müller-Breslau

11.2.9 The war of positions

11.2.10 Until death do us part: Fillunger versus Terzaghi

11.2.11 "In principle, yes...": the dispute about principles

11.2.12 Elastic or plastic? That is the question.

11.3 Résumé
12 Perspectives for theory of structures

692 12.1 Theory of structures and aesthetics

694 12.1.1 The schism of architecture

699 12.1.2 Beauty and utility in architecture – a utopia?

702 12.1.3 Alfred Gotthold Meyer’s Eisenbauten. Ihre Geschichte und Ästhetik

707 12.2 The aesthetics in the dialectic between building and calculation

708 12.2.1 Historico-genetic methods for teaching of theory of structures

709 12.2.2 Content, aims, means and characteristics of the historico-genetic teaching of theory of structures

709 12.2.3 Outlook

712 Brief biographies

778 Bibliography

831 Name index

839 Subject index