Frank Schweitzer

Browning Agents and Active Particles

Collective Dynamics in the Natural and Social Sciences

With a Foreword by J. Doyne Farmer

With 192 Figures and 3 Tables

Springer
Contents

1. Complex Systems and Agent Models .. 1
 1.1 Introduction to Agent-Based Modeling 1
 1.1.1 The Micro–Macro Link 1
 1.1.2 The Role of Computer Simulations 3
 1.1.3 Agents and Multiagent Systems 6
 1.1.4 Complex Versus Minimalistic Agents 10
 1.1.5 Agent Ecology .. 13
 1.1.6 Simulation Approaches 17
 1.2 Brownian Agents ... 22
 1.2.1 Outline of the Concept 22
 1.2.2 Interaction as Communication 28
 1.2.3 A Short Survey of the Book 32
 1.3 Brownian Motion .. 39
 1.3.1 Observations .. 39
 1.3.2 Langevin Equation of Brownian Motion 42
 1.3.3 Probability Density and the Fokker–Planck Equation 46

2. Active Particles .. 51
 2.1 Active Motion and Energy Consumption 51
 2.1.1 Storage of Energy in an Internal Depot 51
 2.1.2 Velocity-Dependent Friction 54
 2.1.3 Active Motion of Cells 56
 2.1.4 Pumping by Space-Dependent Friction 60
 2.2 Active Motion in One-Dimensional Systems 65
 2.2.1 Adiabatic Approximations and Stationary Solutions 65
 2.2.2 Stationary Velocities and Critical Parameters
 for $U = \text{const}$.. 67
 2.2.3 Stationary Solutions for a Linear Potential $U = ax$ 70
 2.2.4 Deterministic Motion in a Ratchet Potential 75
 2.2.5 Investigation of the Net Current 82
 2.2.6 Stochastic Influences on the Net Current 86
 2.2.7 Directed Motion in a Ratchet Potential 92
 2.3 Active Motion in Two-Dimensional Systems 95
 2.3.1 Distribution Function for $U = \text{const}$ 95
XIV Contents

2.3.2 Deterministic Motion in a Parabolic Potential ... 101
2.3.3 Analytical Solutions
 for Deterministic Limit Cycle Motion ... 103
2.3.4 Deterministic Chaotic Motion
 in the Presence of Obstacles ... 108
2.3.5 Stochastic Motion in a Parabolic Potential ... 109
2.3.6 Stochastic Motion with Localized Energy Sources ... 111
2.4 Swarming of Active Particles ... 114
2.4.1 Canonical-Dissipative Dynamics of Swarms ... 114
2.4.2 Harmonic Swarms ... 119
2.4.3 Coupling via Mean Momentum
 and Mean Angular Momentum ... 126

3. Aggregation and Physicochemical Structure Formation ... 133
3.1 Indirect Agent Interaction ... 133
3.1.1 Response to External Stimulation ... 133
3.1.2 Generation of an Effective Potential Field ... 136
3.1.3 Master Equations and Density Equations ... 138
3.1.4 Stochastic Simulation Technique ... 141
3.2 Aggregation of Brownian Agents ... 145
3.2.1 Chemotactic Response ... 145
3.2.2 Stability Analysis for Homogeneous Distributions ... 146
3.2.3 Estimation of an Effective Diffusion Coefficient ... 151
3.2.4 Competition of Spikes ... 153
3.2.5 Derivation of a Selection Equation ... 156
3.2.6 Comparison to Biological Aggregation ... 159
3.3 Pattern Formation in Reaction-Diffusion Systems ... 164
3.3.1 Coexistence of Spikes ... 164
3.3.2 Spiral Waves and Traveling Spots ... 169
3.3.3 Traveling Waves ... 171

4. Self-Organization of Networks ... 175
4.1 Agent-Based Model of Network Formation ... 175
4.1.1 Basic Assumptions and Equations of Motion ... 175
4.1.2 Results of Computer Simulations ... 179
4.2 Estimation of Network Connectivity ... 182
4.2.1 Critical Temperature ... 182
4.2.2 Network Connectivity and Threshold ... 186
4.2.3 Numerical Results ... 190
4.3 Construction of a Dynamic Switch ... 192
4.3.1 Setup for the Switch ... 192
4.3.2 Simulations of the Dynamic Switch ... 194
4.3.3 Estimation of the Switch Delay ... 198
6. Movement and Trail Formation by Pedestrians 247
 6.1 Movement of Pedestrians 247
 6.1.1 The Social Force Model 247
 6.1.2 Simulation of Pedestrian Motion 249
 6.2 Trail Formation by Pedestrians 251
 6.2.1 Model of Trail Formation 251
 6.2.2 Human Trail Formation 255
 6.2.3 Simulation of Pedestrian Trail Systems 258
 6.2.4 Macroscopic Equations of Trail Formation 261

5. Tracks and Trail Formation in Biological Systems 203
 5.1 Active Walker Models 203
 5.1.1 Master Equation Approach to Active Walkers 203
 5.1.2 Active Walker Models of Fractal Growth Patterns 206
 5.1.3 Active Walker Models of Bacterial Growth 208
 5.2 Discrete Model of Track Formation 212
 5.2.1 Biased Random Walks 212
 5.2.2 Reinforced Biased Random Walks 217
 5.2.3 Formation of Tracks 221
 5.3 Track Formation and Aggregation in Myxobacteria 225
 5.3.1 Modification of the Active Walker Model 225
 5.3.2 Simulation of Myxobacterial Aggregation 228
 5.4 Trunk Trail Formation of Ants 232
 5.4.1 Biological Observations 232
 5.4.2 Active Walker Model of Trail Formation in Ants 235
 5.4.3 Simulation of Trunk Trail Formation in Ants 240

7. Evolutionary Optimization Using Brownian Searchers 267
 7.1 Evolutionary Optimization Strategies 267
 7.1.1 Ensemble Search with Brownian Agents 267
 7.1.2 Boltzmann Strategy and Darwinian Strategy 270
 7.1.3 Mixed Boltzmann–Darwinian Strategy 275
 7.2 Evaluation and Optimization of Road Networks 279
 7.2.1 Road Networks 279
 7.2.2 The Evaluation Function 281
 7.2.3 Results of Computer Simulations 284
 7.3 Asymptotic Results on the Optimization Landscape 289
 7.3.1 Optimization Values in the Asymptotic Limit 289
 7.3.2 Density of States in the Asymptotic Limit 291

8. Analysis and Simulation of Urban Aggregation 295
 8.1 Spatial Structure of Urban Aggregates 295
 8.1.1 Urban Growth and Population Distribution 295
 8.1.2 Mass Distribution of Urban Aggregates: Berlin 300
 8.1.3 Fractal Properties of Urban Aggregates 304
1. Introduction

1.1 The Microscopic and Macroscopic View

The emergent properties of social systems cannot be found in their individual components or in the motion of social groups. The components can be found in: "micropatterns, "macroscopic" phenomena, or coherent patterns, corresponding to the motion of social groups. Heuristic arguments between "microscopic" and "macroscopic" phenomena have been presented.

Microscopic

Macroscopic

Fig. 1.1. The emergent generic or macroscopic phenomena from interactions (1) between the components who are subject to the motion of the whole system.

Although, for instance, [121], this is not completely true for instance, for the evolution of social systems, where components who are subject to the motion of the whole system can not be completely separated.

For specific social systems, the role of the microscopic level has not been

1 New England