Principles of Constraint Programming

Krzysztof R. Apt

CWI, Amsterdam, The Netherlands
Contents

Acknowledgements

1 Introduction
1.1 Basic characteristics of constraint programming 1
1.2 Applications of constraint programming 3
1.3 A very short history of the subject 5
1.4 Our approach 6
1.5 Organisation of the book 6

2 Constraint satisfaction problems: examples
2.1 Basic concepts 9
2.2 Constraint satisfaction problems on integers 11
2.3 Constraint satisfaction problems on reals 16
2.4 Boolean constraint satisfaction problems 19
2.5 Symbolic constraint satisfaction problems 21
2.6 Constrained optimization problems 43
2.7 Summary 47
2.8 Exercises 48
2.9 Bibliographic remarks 51
2.10 References 52

3 Constraint programming in a nutshell
3.1 Equivalence of CSPs 55
3.2 Basic framework for constraint programming 58
3.2.1 PREPROCESS 59
3.2.2 HAPPY 60
3.2.3 ATOMIC 61
3.2.4 SPLIT 61
3.2.5 PROCEED BY CASES 64
3.2.6 CONSTRAINT PROPAGATION 66
3.2.7 Constraint propagation algorithms
3.3 Example: Boolean constraints
3.4 Example: polynomial constraints on integer intervals
3.5 Summary
3.6 Bibliographic remarks

4 Some complete constraint solvers
4.1 A proof theoretical framework
4.1.1 Proof rules
4.1.2 Derivations
4.2 Term equations
4.2.1 Terms
4.2.2 Substitutions
4.2.3 Unifiers and mgu's
4.2.4 Unification problem and solving of CSPs
4.2.5 The UNIF proof system
4.2.6 The MARTELLI-MONTANARI algorithm
4.3 Linear equations over reals
4.3.1 Linear expressions and linear equations
4.3.2 Substitutions, unifiers and mgu's
4.3.3 Linear equations and CSPs
4.3.4 The LIN proof system
4.3.5 The GAUSS-JORDAN ELIMINATION algorithm
4.3.6 The GAUSSIAN ELIMINATION algorithm
4.4 Linear inequalities over reals
4.4.1 Syntax
4.4.2 Linear inequalities and CSPs
4.4.3 The INEQ proof system
4.4.4 The FOURIER-MOTZKIN ELIMINATION algorithm
4.5 Summary
4.6 Exercises
4.7 Bibliographic remarks
4.8 References

5 Local consistency notions
5.1 Node consistency
5.2 Arc consistency
5.3 Hyper-arc consistency
5.4 Directional arc consistency
5.5 Path consistency
5.6 Directional path consistency
Contents

5.7 k-consistency 157
5.8 Strong k-consistency 164
5.9 Relational consistency 166
5.10 Graphs and CSPs 170
5.11 Summary 175
5.12 Exercises 175
5.13 Bibliographic remarks 176
5.14 References 176

6 Some incomplete constraint solvers 178
6.1 A useful lemma 180
6.2 Equality and disequality constraints 181
6.3 Boolean constraints 184
6.3.1 Transformation rules 185
6.3.2 Domain reduction rules 186
6.3.3 Example: full adder circuit 188
6.3.4 A characterisation of the system $BOOL$ 191
6.4 Linear constraints on integer intervals 192
6.4.1 Domain reduction rules for inequality constraints 194
6.4.2 Domain reduction rules for equality constraints 196
6.4.3 Rules for disequality constraints 199
6.4.4 Rules for strict inequality constraints 200
6.4.5 Shifting from intervals to finite domains 200
6.4.6 Example: the $SEND + MORE = MONEY$ puzzle 201
6.4.7 Bounds consistency 202
6.4.8 A characterisation of the $LINEAR\ EQUALLITY$ rule 206
6.5 Arithmetic constraints on integer intervals 211
6.5.1 Domain reduction rules: first approach 211
6.5.2 Domain reduction rules: second approach 213
6.5.3 Domain reduction rules: third approach 217
6.5.4 Implementation of the third approach 221
6.5.5 Shifting from intervals to finite domains 223
6.6 Arithmetic constraints on reals 224
6.6.1 Interval arithmetic 226
6.6.2 Domain reduction rules 227
6.6.3 Implementation issues 233
6.6.4 Using floating-point intervals 236
6.6.5 Correctness and efficiency issues 238
6.7 Arithmetic equations over reals 242
6.8 Summary 245
Contents

6.9 Exercises 245
6.10 Bibliographic remarks 248
6.11 References 251

7 Constraint propagation algorithms 254
7.1 Generic iteration algorithms 256
7.1.1 Iterations 256
7.1.2 Algorithms for arbitrary partial orderings 261
7.1.3 Algorithms for cartesian products of partial orderings 264
7.2 From partial orderings to CSPs 268
7.3 A node consistency algorithm 269
7.4 An arc consistency algorithm 271
7.5 A hyper-arc consistency algorithm 273
7.6 A directional arc consistency algorithm 275
7.7 A path consistency algorithm 277
7.8 A directional path consistency algorithm 281
7.9 A k-consistency algorithm 283
7.10 A relational consistency algorithm 286
7.11 Implementations of incomplete constraint solvers 287
7.12 Summary 290
7.13 Exercises 291
7.14 Bibliographic remarks 295
7.15 References 297

8 Search 299
8.1 Search trees 301
8.2 Labeling trees 303
8.2.1 Complete labeling trees 304
8.2.2 Reduced labeling trees 308
8.2.3 prop labeling trees 310
8.3 An example: SEND + MORE = MONEY 313
8.4 Instances of prop labeling trees 315
8.4.1 Forward checking 315
8.4.2 Partial look ahead 319
8.4.3 Maintaining arc consistency (MAC) 321
8.5 Search algorithms for the labeling trees 324
8.5.1 Backtrack-free search 325
8.5.2 Backtrack-free search with constraint propagation 327
8.5.3 Backtracking 329
8.5.4 Backtracking with constraint propagation 330
8.6 Instances of backtracking with constraint propagation 332
Contents

8.6.1 Forward checking 332
8.6.2 Partial look ahead 333
8.6.3 Maintaining arc consistency (MAC) 334
8.6.4 Searching for all solutions 335
8.7 Search algorithms for finite constrained optimization problems 335
8.7.1 Branch and bound 337
8.7.2 Branch and bound with constraint propagation 339
8.7.3 Branch and bound with constraint propagation and cost constraint 339
8.8 Heuristics for search algorithms 341
8.8.1 Variable selection 341
8.8.2 Value selection 343
8.9 An abstract branch and bound algorithm 344
8.10 Summary 347
8.11 Exercises 347
8.12 Bibliographic remarks 348
8.13 References 349

9 Issues in constraint programming 351
9.1 Modeling 352
9.1.1 Choosing the right variables 352
9.1.2 Choosing the right constraints 353
9.1.3 Choosing the right representation 356
9.1.4 Global constraints 358
9.2 Constraint programming languages 359
9.2.1 Constraint logic programming 360
9.2.2 ILOG solver 362
9.2.3 Generation of constraints 363
9.3 Constraint propagation 364
9.4 Constraint solvers 366
9.4.1 Building constraint solvers 366
9.4.2 Incrementality 367
9.4.3 Simplification of constraints 368
9.5 Search 369
9.5.1 Search in modeling languages 369
9.5.2 Depth-first search: backtracking and branch and bound 370
9.5.3 Breadth-first search and limited discrepancy search 371
9.5.4 Local search 372
9.5.5 Search in constraint programming languages 375
9.5.6 Biology-inspired approaches 378
Contents

9.6 Over-constrained problems 379
9.6.1 Partial, weighted and fuzzy CSPs 380
9.6.2 Constraint hierarchies 381
9.6.3 Generalisations 383
9.6.4 Reified constraints 383
9.7 Summary 384
9.8 Bibliographic remarks 384

Bibliography 387
Author index 401
Subject index 404