Binders for Durable and Sustainable Concrete

Pierre-Claude Aïtcin

Taylor & Francis
Taylor & Francis Group
LONDON AND NEW YORK
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxiii</td>
</tr>
<tr>
<td>Note from the author</td>
<td>xxvii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Concrete: the most widely used construction material</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Concrete helps satisfy a fundamental need</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The strengths and weaknesses of concrete</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Presentation of the different chapters of the book</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>2 Binders and concrete of yesterday</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Gypsum, one of the first binders</td>
<td>20</td>
</tr>
<tr>
<td>2.3 The use of lime</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Hydraulic binders based on pozzolans</td>
<td>27</td>
</tr>
<tr>
<td>2.5 The discovery of Portland cement</td>
<td>30</td>
</tr>
<tr>
<td>2.6 The development of modern concrete</td>
<td>36</td>
</tr>
<tr>
<td>2.7 Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>3 The hydraulic binders and concrete industries at the beginning of the twenty-first century</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Evolution of cement consumption during the twentieth century</td>
<td>44</td>
</tr>
<tr>
<td>3.2 The new ecological policy: from Portland cement to hydraulic binders</td>
<td>52</td>
</tr>
<tr>
<td>3.3 The structure of the cement industry during the second half of the twentieth century</td>
<td>54</td>
</tr>
<tr>
<td>3.4 The law of the market</td>
<td>56</td>
</tr>
</tbody>
</table>
3.5 Technological regulation of the cement industry 58
3.6 International associations 60
3.7 Technical and educational societies 60
3.8 Research in the area of cement and concrete 60
3.9 Scientific literature 61
3.10 Scientific meetings 62
3.11 Conclusion 62
References 63

4 The chemical and phase composition of Portland cement 64
4.1 The chemical composition of Portland cement: its importance, its limitations 64
4.2 The phase composition of Portland cement 70
4.3 Simplified chemical notations 74
4.4 Bogue potential composition 74
4.5 The ionic nature of the mineral phases found in Portland cement clinker 76
4.6 Amorphous solids: glasses 78
4.7 The CaO-SiO₂, and SiO₂-CaO-Al₂O₃ phase diagrams 80
4.7.1 Introduction 80
4.7.2 The CaO-SiO₂ phase diagram 81
4.7.3 The CaO-SiO₂-Al₂O₃ phase diagram 83
4.8 Making of Portland cement clinker 85
4.9 Conclusion 88
References 88

5 Production of Portland cement (This chapter was written in collaboration with J.-C. Weiss) 90
5.1 Historical background of Portland cement production 90
5.2 Manufacturing processes 106
5.3 Selection and preparation of the raw materials 112
5.4 The fuels 116
5.5 Schematic representation of a cement kiln 117
5.5.1 Kiln with a pre-heater 117
5.5.2 Two-pier short kiln equipped with a precalciner 119
5.5.3 Long kiln with three piers equipped with a precalciner 121
5.6 Circulation of volatiles 121
5.6.1 Chlorine cycle 122
5.6.2 Sulphur and alkali cycles 123
5.7 Microscopical examination of some industrial clinkers 124
5.7.1 Examination of Figure 5.26 124
5.7.2 Examination of Figure 5.27 124
References 124

5.8 Clinker 125
5.9 The equipment 125
5.10 Final 128
5.11 Qual. 132
5.12 Conclusion 134
5.13 Does 137
5.14 The equipment. 139
5.15 Mini 142
5.16 Conclusion 143

6 Portland cement clinker 144
6.1 Introduction 144
6.2 The sphen 146
6.3 How 148
6.4 Portland cement clinker 150
6.4.1 Conclusion 150
6.4.2 150
6.4.3 152
6.5 Direct 154
6.6 Indirect temperatures 156
6.6.1 156
6.6.2 158
6.6.3 160
6.6.4 162
6.7 Portland cement 164
6.7.1 164
5.7.3 Examination of Figure 5.28 124
5.7.4 Examination of Figure 5.29 125
5.7.5 Examination of Figure 5.30 125
5.7.6 Examination of Figure 5.31 126
5.7.7 Examination of Figure 5.32 127
5.8 Clinker storage 128
5.9 The addition of calcium sulphate 129
5.10 Final grinding 133
5.11 Quality control 135
 5.11.1 Chemical analysis 135
 5.11.2 Physical properties 136
 5.11.3 Mechanical properties 137
5.12 Conditioning and shipping 138
5.13 Evolution of the characteristics of Portland cement 140
5.14 The ecological impact of Portland cement manufacturing 142
5.15 Does an ideal Portland cement exist? 143
5.16 Conclusion 144
References 144

6 Portland cement hydration
 6.1 Introduction 146
 6.2 The scientific complexity of a simple technological phenomenon 148
 6.3 How to approach the hydration reaction 151
 6.4 Portland cement and gypsum 153
 6.4.1 Controlling the hydration of C₃A 153
 6.4.2 The true nature of the calcium sulphate found in Portland cement 156
 6.4.3 The SO₃ content of clinker 159
 6.5 Direct observation of the structural modifications occurring during cement hydration 161
 6.6 Indirect observations of the physico-chemical and thermodynamic changes occurring during Portland cement hydration 166
 6.6.1 Variation of the electrical conductivity 167
 6.6.2 Portland cement setting 168
 6.6.3 Development of the heat of hydration 168
 6.6.4 Volumetric variations associated with hydration reaction 172
 6.6.4.1 Le Chatelier’s observations 173
 6.6.4.2 Autogenous shrinkage 174
 6.7 Portland cement hydration 176
 6.7.1 Some experimental data on hydration reaction 176
xii Contents

6.7.2 Jensen’s and Hansen’s graphical representation of hydration reaction 177
 6.7.2.1 Case of cement paste having a water/binder ratio equal to 0.60 181
 6.7.2.2 Case of cement paste having a water/binder ratio equal to 0.42 182
 6.7.2.3 Case of cement paste having a water/binder ratio equal to 0.30 182
 6.7.2.4 Case of cement paste having a water/binder ratio equal to 0.60 that is hydrating in the presence of an external source of water 182
 6.7.2.5 Case of cement paste having a water/binder ratio of 0.42 that is hydrating in the presence of an external source of water 183
 6.7.2.6 Case of cement paste having a water/binder ratio of 0.30 that is hydrating in the presence of an external source of water 183
 6.7.3 Amount of external water necessary to avoid self-desiccation of the cement paste (using Power’s definition of self-desiccation) 184
 6.7.4 Volumetric changes during the hardening of concrete 186
 6.7.5 Influence of the temperature in the kinetics of hydration reaction 187

6.8 Sequential description of hydration reaction 188
 6.8.1 First stage: mixing period 189
 6.8.2 Second stage: dormant period 189
 6.8.3 Third stage: setting and acceleration of hydration 190
 6.8.4 Fourth stage: hardening 192
 6.8.5 Fifth stage: slow-down period 193
 6.8.6 Schematic representation of a hydrated cement paste at twenty-eight days 193

6.9 Linking hydration and mechanical strength 194

6.10 Structural models of C-S-H 195

6.11 The origin of the cohesive forces 198

6.12 Modelling hydration reaction 200

6.13 Conclusion 200

References 201

7 Admixtures 206
 7.1 Historical background 207
 7.2 An artificially complicated terminology 209
7.3 Dispersing agents 213
7.3.1 The dispersion of cement particles 213
7.3.2 Lignosulphonates 218
7.3.3 Superplasticizers 221
7.3.3.1 Polynaphthalenes (PNS) 222
7.3.3.2 Hydration in the presence of polysulphonate 224
7.3.3.3 The crucial role of calcium sulphate 228
7.3.3.4 The compatibility between polysulphonate and cement 229
7.3.3.5 The limits of the testing of the rheology of cement paste 231
7.3.3.6 Some typical cases 234
7.3.3.7 Selection of a superplasticizer 240
7.3.3.8 Superplasticizer dosage 248
7.3.3.9 Practical advice 249
7.4 Admixtures that modify hydration kinetics 251
7.4.1 Accelerators 251
7.4.2 Set accelerators 253
7.4.3 Retarders 254
7.4.4 Cocktails of dispersing agent: accelerator or dispersing-agent retarder 256
7.5 Admixtures that react with one of the by-products of hydration reaction 257
7.6 Air-entraining agents 258
7.7 Other types of admixtures 260
7.7.1 Colloidal agents 260
7.7.2 Water-repellent admixtures 261
7.7.3 Shrinkage-reducing admixtures 261
7.7.4 Anti-freeze admixtures 262
7.7.5 Latexes 262
7.7.6 Foaming agents 263
7.7.7 Corrosion inhibitors 263
7.8 Conclusion 264
8 Cementitious materials other than Portland cement: supplementary cementitious materials, mineral components Portland cement additions 273
8.1 Terminology 273
8.2 Blast furnace slag 276
8.2.1 Fabrication process 276
8.2.2 Slag hydration 282
8.2.3 Effect of slag on the main characteristics of concrete 283
8.3 Pozzolans 285
 8.3.1 Fly ashes 287
 8.3.2 Silica fume 293
 8.3.3 Calcined clays and shales 299
 8.3.4 Rice husk ash 299
 8.3.5 Natural pozzolans 300
 8.3.6 Diatomaceous earth 303
 8.3.7 Perlite 304
8.4 Fillers 305
8.5 Producing blended cement by adding cementitious materials directly in the concrete mixer? 306
8.6 Effects of cementitious materials on the principal characteristics of concrete 307
8.7 Blended cements 309
8.8 Conclusion 310
References 310

9 Special Portland cements and other types of hydraulic binder 314
9.0 Introduction 314
9.1 Special Portland cements 314
 9.1.1 White Portland cement 315
 9.1.2 Buff cement 315
 9.1.3 Oil well cements 316
 9.1.4 Shrinkage compensating cements 317
 9.1.5 Regulated set cements 317
 9.1.6 Masonry cement 318
 9.1.7 Air-entrained Portland cements 318
 9.1.8 Low alkali Portland cements 319
 9.1.9 Microcements 320
9.2 Aluminous cements 320
9.3 Calcium sulfoaluminate cements 325
 9.3.1 Introduction 325
 9.3.2 Composition and hydration of calcium sulfoaluminate cements 325
 9.3.3 Applications of calcium sulfoaluminate cements 326
9.4 Other types of cementitious systems 327
9.5 Other types of cements 328
 9.5.1 Sorel cement 328
 9.5.2 Oxisulphate magnesium-based cement 328
 9.5.3 Other cements 328
9.6 Conclusion 329
References 329
10 The art and science of high-performance concrete 332

10.1 Introduction 332
10.2 What is high-performance concrete? 333
10.3 Water/cement or water/binder ratio? 333
10.4 Concrete as a composite material 334
10.5 Making high-performance concrete 335
10.6 Temperature rise 335
10.7 Shrinkage 341
10.8 Curing 343
10.9 Durability 347
 10.9.1 General matters 347
 10.9.2 Durability in a marine environment 348
 10.9.2.1 Nature of the aggressive action 348
 10.9.2.2 Chemical attack on concrete 349
 10.9.2.3 Physical attack 350
 10.9.2.4 Mechanical attack 350
 10.9.2.5 Conclusion 351
10.10 Freeze-thaw resistance 351
10.11 The fire resistance of HPC 352
 10.11.1 The fire in the Channel Tunnel 353
 10.11.2 The Düsseldorf Airport fire 355
 10.11.3 Spalling of concrete under fire conditions 355
 10.11.4 The Britl-Euram III ETECO BE-1158 Research Project 355
10.12 The future of HPCs 356
10.13 Some HPC structures 357
 10.13.1 Monuments in HPC 357
 10.13.2 Skyscrapers 358
 10.13.2.1 The Petronas Towers in Kuala Lumpur 360
 10.13.2.2 High-rise buildings in Montreal 361
 10.13.2.3 High-rise buildings in Canada 361
 10.13.2.4 A very special American high-rise building 361
 10.13.3 HPC bridges 362
 10.13.3.1 Joinville Bridge in France 364
 10.13.3.2 Small bridges 364
 10.13.3.3 Portneuf Bridge 365
 10.13.3.4 Montée St-Reéviaduct 370
 10.13.3.5 The Normandie Bridge in France 370
 10.13.3.6 The Confederation Bridge in Canada 371
 10.13.4 Hibernia offshore platform 373
 10.13.5 Miscellaneous uses of HPC 375
 10.13.5.1 Reconstruction of an entrance of a McDonald's restaurant 375
 10.13.5.2 Piglet farm 377
10.13.6 Special HPCs 378
 10.13.6.1 Self-compacting HPCs 378
 10.13.6.2 Roller-compacted HPC 379

10.14 Reactive powder concrete 379
 10.14.1 Reactive powder concrete concept 383
 10.14.1.1 Increase of homogeneity 383
 10.14.1.2 Increase of compactness 384
 10.14.1.3 Improvement of the microstructure by thermal treatment 385
 10.14.1.4 Improvement of the ductility of reactive powder concrete 385
 10.14.2 The Sherbrooke pedestrian bikeway 387
 10.14.3 Fabrication 388
 10.14.3.1 Phase I: fabrication of the confined post tensioned diagonals 388
 10.14.3.2 Phase II: construction of the deck and of the lower beam 388
 10.14.3.3 Phase III: curing 389
 10.14.3.4 Phase IV: transportation to the site 389
 10.14.4 Erection 389
 10.14.4.1 Phase I: assembling the prefabricated elements 389
 10.14.4.2 Phase II: installation of each half of the bridge 391
 10.14.5 The past and the future 391

References 395

11 The development of the cement and concrete industries within a sustainable development policy 397
 11.1 Introduction 397
 11.2 How to lower the environmental impact of concrete 400
 11.2.1 Reducing the water/binder ratio 400
 11.2.2 Increasing the service life of concrete structures 402
 11.2.3 Using concretes having a lower cement content 403
 11.2.3.1 High-performance concrete having a low heat of hydration 403
 11.2.3.2 High volume fly ash and slag concretes 404
 11.2.4 Recycling concrete 404
 11.3 The manufacturing of hydraulic binders presenting a more energy-efficient and ecological performance than present Portland cement 405
 11.3.1 Decreasing the energetic content of clinker 405
 11.3.1.1 Decreasing the clinkering temperature through the use of mineralizers 406

11.4 Would it be... References 395

12 Cements of yester...
11.3.2 Producing a belitic clinker 406
11.3.3 Using a source of lime other than limestone 407
11.3.4 Use of mineral components 408
11.4 Would it be possible to eliminate Portland cement? 409
11.5 Conclusion 410
References 411

12 Cements of yesterday and today, concretes of tomorrow 413
12.1 Introduction 413
12.2 Concrete: the most widely used construction material in the world 414
12.3 Progress achieved by the cement industry in recent years 415
12.4 The emergence of a science of concrete 416
12.4.1 Recent progress achieved in the field of chemical admixtures 416
12.4.2 Progress achieved in observing the microstructure and in understanding the nanostructure of concretes 419
12.5 Cements of yesterday and today 420
12.5.1 Evolution of their characteristics 420
12.5.2 Standards 421
12.5.3 Cement admixture/compatibility 421
12.6 Concretes of yesterday and today 423
12.6.1 A commodity product or a niche product 423
12.6.2 Strength or durability 425
12.6.3 The race for more MPa 426
12.7 The concrete of tomorrow in a sustainable development perspective 427
12.7.1 The ecological impact of concrete 428
12.7.2 The binders of tomorrow 429
12.7.3 The admixtures of tomorrow 429
12.7.4 The concrete of tomorrow 430
12.8 The development of the concrete industry and the cement industry in the twenty-first century 430
12.9 Conclusion 431
References 432

13 My vision of clinkers and binders 433
13.1 Introduction 433
13.2 My vision of clinkers and binders 433
13.3 The ideal Portland cement 435
13.4 Perverse effects of C_3A 436
13.4.1 Perverse effects of C_3A on the rheology of concrete 436
13.4.2 Perverse effects of C₃A on the compatibility and robustness of polysulphonate-based superplasticizers and water reducers 437
13.4.3 The perverse effect of C₃A on the durability of concrete 438
13.5 Making concrete with an ASTM Type V cement 439
13.6 Conclusion 440
References 441
Appendix I How Vicat prepared his artificial lime (Mary 1862) 442
Appendix II AD 1824...........No. 5022: artificial stone: Aspdin's specification 444
Appendix III And if the first North American natural cement was made in 1676 in Montreal 446
Appendix IV The SAL and KOSH treatments 447
Appendix V Determination of the Bogue potential composition 448
Appendix VI Example of a very simple binary diagram 452
Appendix VII Ternary diagrams 453
Appendix VIII Ternary phase diagrams 460
Appendix IX Influence of the alcalis on the nature and morphology of hydration products 466
Appendix X Colouring concrete 473
Appendix XI Relevant ASTM standards 478
Index 482

Modern cement itself intimate mixtur range of 1400 gypsum. Were more supplem ash, silica fur addition, mos such as air-en chemicals, an pletely under cement and ene who are usual sys tern, or they most of completely its Poisson's

Pierre-Cla This book, v distillation of practice. It binders wri minutiae of the behavior con crete, which industrieties.

Unlike n When he fir reluctance, chemical e