Muhammad Sahimi

Flow and Transport in Porous Media and Fractured Rock
From Classical Methods to Modern Approaches
Second, Revised and Enlarged Edition
Contents

Preface to the Second Edition XIX
Preface to the First Edition XXIII

1 Continuum versus Discrete Models 1
 1.1 A Hierarchy of Heterogeneities and Length Scales 2
 1.2 Long-Range Correlations and Connectivity 3
 1.3 Continuum versus Discrete Models 5

2 The Equations of Change 9
 2.1 The Mass Conservation Equation 9
 2.2 The Momentum Equation 10
 2.3 The Diffusion and Convective-Diffusion Equations 11
 2.4 Fluid Flow in Porous Media 12

3 Characterization of Pore Space Connectivity: Percolation Theory 15
 3.1 Network Model of a Porous Medium 15
 3.2 Percolation Theory 18
 3.2.1 Bond and Site Percolation 19
 3.2.2 Computer Simulation and Counting the Clusters 22
 3.2.3 Bicontinuous Porous Materials 23
 3.3 Connectivity and Clustering Properties 23
 3.4 Flow and Transport Properties 24
 3.5 The Sample- Spanning Cluster and Its Backbone 25
 3.6 Universal Properties 27
 3.7 The Significance of Power Laws 28
 3.8 Dependence of Network Properties on Length Scale 28
 3.9 Finite-Size Effects 30
 3.10 Random Networks and Continuum Models 31
 3.11 Differences between Network and Continuum Models 33
 3.12 Porous Materials with Low Percolation Thresholds 35
 3.13 Network Models with Correlations 35
 3.14 A Glance at History 36
Characterization of the Morphology of Porous Media 39

4.1 Porosity 41
4.2 Fluid Saturation 43
4.3 Specific Surface Area 44
4.4 The Tortuosity Factor 44
4.5 Correlations in Porosity and Pore Sizes 45
4.6 Surface Energy and Surface Tension 47
4.7 Laplace Pressure and the Young–Laplace Equation 48
4.8 Contact Angles and Wetting; The Young–Dupré Equation 49
4.9 The Washburn Equation and Capillary Pressure 50
4.10 Measurement of Capillary Pressure 53
4.11 Pore Size Distribution 54
4.12 Mercury Porosimetry 55
4.12.1 Pore Size Distribution 59
4.12.2 Pore Length Distribution 60
4.12.3 Pore Number Distribution 60
4.12.4 Pore Surface Distribution 60
4.12.5 Particle Size Distribution 60
4.12.6 Pore Network Models 61
4.12.7 Percolation Models 69
4.13 Sorption in Porous Media 76
4.13.1 Classifying Adsorption Isotherms and Hysteresis Loops 77
4.13.2 Mechanisms of Adsorption 78
4.13.2.1 Adsorption in Micropores 78
4.13.2.2 Adsorption in Mesopores: The Kelvin Equation 78
4.13.3 Adsorption Isotherms 81
4.13.3.1 The Langmuir Isotherm 81
4.13.3.2 The Brunauer–Emmett–Teller (BET) Isotherm 82
4.13.3.3 The Frenkel–Halsey–Hill Isotherm 83
4.13.4 Distributions of Pore Size, Surface, and Volume 83
4.13.5 Pore Network Models 85
4.13.6 Percolation Models 86
4.14 Pore Size Distribution from Small-Angle Scattering Data 87
4.15 Pore Size Distribution from Nuclear Magnetic Resonance 88
4.16 Determination of the Connectivity of Porous Media 91
4.17 Fractal Properties of Porous Media 96
4.17.1 Adsorption Methods 96
4.17.2 Chord-Length Measurements 99
4.17.2.1 Chord-Length Measurements on Fracture Surfaces 99
4.17.2.2 Chord-Length Measurements on Thin Sections 102
4.17.3 The Correlation Function Method 103
4.17.4 Small-Angle Scattering 106
4.17.5 Porosity and Pore Size Distribution of Fractal Porous Media 108
5 Characterization of Field-Scale Porous Media: Geostatistical Concepts and Self-Affine Distributions 109

5.1 Estimators of a Population of Data 111
5.2 Heterogeneity of a Field-Scale Porous Medium 113
5.2.1 The Dykstra-Parsons Heterogeneity Index 114
5.2.2 The Lorenz Heterogeneity Index 115
5.2.3 The Index of Variation 116
5.2.4 The Gelhar-Axness Heterogeneity Index 117
5.2.5 The Koval Heterogeneity Index 117
5.3 Correlation Functions 117
5.3.1 Autocovariance 118
5.3.2 Autocorrelation 118
5.3.3 Semivariance and Semivariogram 119
5.4 Models of Semivariogram 121
5.4.1 The Exponential Model 121
5.4.2 The Spherical Model 121
5.4.3 The Gaussian Model 121
5.4.4 The Periodic Model 122
5.5 Infinite Correlation Length: Self-Affine Distributions 122
5.5.1 The Spectral Density Method 127
5.5.2 Successive Random Additions 127
5.5.3 The Wavelet Decomposition Method 129
5.5.4 The Maximum Entropy Method 131
5.6 Interpolating the Data: Kriging 132
5.6.1 Biased Kriging 134
5.6.2 Unbiased Kriging 135
5.6.3 Kriging with Constraints for Nonadditive Properties 136
5.6.4 Universal Kriging 137
5.6.5 Co-Kriging 137
5.7 Conditional Simulation 138
5.7.1 Sequential Gaussian Simulation 138
5.7.2 Random Residual Additions 139
5.7.3 Sequential Indicator Simulation 140
5.7.4 Optimization-Reconstruction Methods 141

6 Characterization of Fractures, Fracture Networks, and Fractured Porous Media 143

6.1 Surveys and Data Acquisition 144
6.2 Characterization of Surface Morphology of Fractures 146
6.2.1 Self-Similar Structures 146
6.2.2 The Correlation Functions 148
6.2.3 Rough Self-Affine Surfaces 148
6.2.4 Measurement of Surface Roughness 149
6.3 Generation of a Rough Surface: Fractional Brownian Motion 151
6.4 The Correlation Function for a Rough Surface 152
Contents

6.5 Characterization of a Single Fracture 152
6.5.1 Aperture 153
6.5.2 Contact Area 154
6.5.3 Surface Height 155
6.5.4 Surface Roughness 155
6.6 Characterization of Fracture Networks 156
6.6.1 Fractures and Power-Law Scaling 157
6.6.2 Distribution of Fractures' Length 159
6.6.3 Distribution of Fractures' Displacement 160
6.6.4 Distribution of Fractures' Apertures 161
6.6.5 Distribution of Fractures' Orientation 163
6.6.6 Density of Fractures 163
6.6.7 Connectivity of Fracture Networks 164
6.6.8 Self-Similar Structure of Fracture Networks 167
6.6.9 Interdimensional Relations 169
6.7 Characterization of Fractured Porous Media 170
6.7.1 Analysis of Well Logs 171
6.7.2 Seismic Attributes 171
6.7.3 Fracture Distribution 174
6.7.4 Fracture Density from Well Log Data 175

7 Models of Porous Media 179
7.1 Models of Porous Media 179
7.1.1 One-Dimensional Models 180
7.1.2 Spatially-Periodic Models 181
7.1.3 Bethe Lattice Models 183
7.1.4 Pore Network Models 184
7.2 Continuum Models 185
7.2.1 Packing of Spheres 186
7.2.2 Particle Distribution and Correlation Functions 188
7.2.3 The n-Particle Probability Density 192
7.2.4 Distribution of Equal-Size Particles 193
7.2.4.1 Fully-Penetrable Spheres 194
7.2.4.2 Fully-Impenetrable Spheres 195
7.2.4.3 Interpenetrable Spheres 196
7.2.5 Distribution of Polydispersed Spheres 196
7.2.5.1 Fully-Penetrable Spheres 197
7.2.5.2 Fully-Impenetrable Spheres 198
7.2.6 Simulation of Packings of Spheres 198
7.3 Models Based on Diagenesis of Porous Media 199
7.4 Reconstruction of Porous Media 201
7.5 Models of Field-Scale Porous Media 205
7.5.1 Random Hydraulic Conductivity Models 206
7.5.2 Fractal Models 206
7.5.3 Multifractal Models 207
7.5.4 Reconstruction Methods 208
 7.5.4.1 The Genetic Algorithm for Reconstruction 209
 7.5.4.2 Reconstruction Based on Flow and Seismic Data 211

8 Models of Fractures and Fractured Porous Media 213
 8.1 Models of a Single Fracture 217
 8.2 Models of Fracture Networks 215
 8.2.1 Excluded Area and Volume 216
 8.2.2 Two-Dimensional Models 217
 8.2.3 Three-Dimensional Models 220
 8.2.4 Fracture Networks of Convex Polygons 222
 8.2.5 The Dual Permeability Model 227
 8.3 Reconstruction Methods 229
 8.4 Synthetic Fractal Models 232
 8.5 Mechanical Models of Fracture Networks 234
 8.6 Percolation Properties of Fractures 241
 8.6.1 A Single Fracture 241
 8.6.2 Fracture Networks 243
 8.7 Models of Fractured Porous Media 247
 8.7.1 The Double-Porosity and Double-Permeability Models 248
 8.7.2 Discrete Models of Fractured Porous Media 250

9 Single-Phase Flow and Transport in Porous Media: The Continuum Approach 253
 9.1 Derivation of Darcy’s Law: Ensemble Averaging 253
 9.2 Measurement of Permeability 256
 9.3 Exact Results 257
 9.3.1 Fluid Flow 257
 9.3.2 Transport 262
 9.4 Effective-Medium and Mean-Field Approximations 265
 9.4.1 Fluid Flow 266
 9.4.2 Transport 267
 9.5 Cluster Expansion 269
 9.5.1 Fluid Flow 269
 9.5.2 Transport 271
 9.6 Rigorous Bounds 271
 9.6.1 Fluid Flow 271
 9.6.2 Transport 273
 9.7 Empirical Correlations 273
 9.8 Packings of Nonspherical Particles 274
 9.9 Numerical Simulation 275
 9.9.1 Random Walk Methods 276
 9.9.2 Lattice-Gas and Lattice-Boltzmann Methods 284
 9.9.2.1 Lattice-Gas Method 284
 9.9.2.2 Lattice-Boltzmann Method 287
 9.10 Relation between Permeability and Electrical Conductivity 291
Contents

9.11 Relation between Permeability and Nuclear Magnetic Resonance 292
9.12 Dynamic Permeability 295
9.13 Non-Darcy Flow 297

10 Single-Phase Flow and Transport in Porous Media:
The Pore Network Approach 299
 10.1 The Pore Network Models 301
 10.2 Exact Formulation and Perturbation Expansion 303
 10.2.1 Green Function Formulation and Perturbation Expansion 304
 10.2.2 Self-Consistent Approximation 305
 10.2.3 Random Walks and Self-Consistent Approximation 306
 10.2.4 Relation with Continuous-Time Random Walks 307
 10.2.5 Effective-Medium Approximation 308
 10.2.6 Effective-Medium Approximation and Percolation Disorder 310
 10.2.7 Steady-State Transport and Percolation Threshold 311
 10.2.8 Extensions of the Effective-Medium Approximation 312
 10.2.9 Effective-Medium Approximation for Anisotropic Media 312
 10.2.10 Continuum Models and Effective-Medium Approximation for Site-Disordered Networks 314
 10.2.11 Accuracy of the Effective-Medium Approximation 314
 10.2.12 Effective-Medium Approximation for the Effective Permeability 315
 10.3 Anomalous Diffusion and Effective-Medium Approximation 316
 10.3.1 Scaling Theory of Anomalous Diffusion 317
 10.3.2 Experimental Test of Anomalous Diffusion 319
 10.3.3 The Governing Equation for Anomalous Diffusion 320
 10.4 Archie’s Law and the Effective-Medium Approximation 321
 10.5 Renormalization Group Methods 324
 10.6 Renormalized Effective-Medium Approximation 329
 10.7 The Bethe Lattice Model 331
 10.8 Critical Path Analysis 333
 10.9 Random Walk Method 337
 10.10 Non-Darcy Flow 338

11 Dispersion in Flow through Porous Media 341
 11.1 The Phenomenon of Dispersion 341
 11.2 Mechanisms of Dispersion Processes 342
 11.3 The Convective-Diffusion Equation 343
 11.4 The Dispersivity Tensor 345
 11.5 Measurement of the Dispersion Coefficients 346
 11.5.1 Longitudinal Dispersion Coefficient 346
 11.5.1.1 Concentration Measurements 346
 11.5.1.2 Resistivity Measurements 348
 11.5.1.3 The Acoustic Method 349
 11.5.2 Transverse Dispersion Coefficient 350
 11.5.3 Nuclear Magnetic Resonance Method 351
 11.6 Dispersion in Systems with Simple Geometry 354
11.6.1 Dispersion in a Capillary Tube: The Taylor-Aris Theory 356
11.6.2 Dispersion in Spatially-Periodic Models of Porous Media 358
11.7 Classification of Dispersion Regimes in Porous Media 359
11.8 Continuum Models of Dispersion in Porous Media 361
11.8.1 The Volume-Averaging Method 361
11.8.2 The Ensemble-Averaging Method 362
11.9 Fluid-Mechanical Models 363
11.10 Pore Network Models 367
11.10.1 First-Passage Time and Random Walk Simulation 367
11.10.2 Probability Propagation Algorithm 368
11.10.3 Deterministic Models 370
11.11 Long-Time Tails: Dead-End Pores versus Disorder 370
11.12 Dispersion in Short Porous Media 372
11.13 Dispersion in Porous Media with Percolation Disorder 374
11.13.1 Theoretical Developments 374
11.13.2 Experimental Measurements 380
11.14 Dispersion in Field-Scale Porous Media 382
11.14.1 Large-Scale Volume Averaging 384
11.14.2 Ensemble Averaging 385
11.14.3 Stochastic Spectral Method 385
11.14.4 Continuous-Time Random Walk Approach 388
11.14.4.1 Relation between the Transition Rates and the Waiting-Time Distribution 392
11.14.4.2 Continuum Limit of the CTRW 393
11.14.4.3 Application to Laboratory Experiments 395
11.14.4.4 Application to Field-Scale Experiments 396
11.14.5 Fractional Convective-Diffusion Equation 398
11.14.6 The Critical Path Analysis 400
11.15 Numerical Simulation 403
11.15.1 Lattice-Boltzmann Method 404
11.15.2 Particle-Tracking Method 405
11.15.3 Fractal Models 406
11.15.4 Long-Range Correlated Percolation Model 408
11.16 Dispersion in Unconsolidated Porous Media 410
11.17 Dispersion in Stratified Porous Media 412

12 Single-Phase Flow and Transport in Fractures and Fractured Porous Media 415
12.1 Experimental Aspects of Flow in a Fracture 416
12.2 Flow in a Single Fracture 418
12.2.1 The Reynolds Approximation 420
12.2.2 Perturbation Expansion 421
12.2.3 Effective-Medium Approximation 421
12.2.4 Asymptotic Expression 423
12.2.5 Effect of the Contact Areas 424
Numerical Simulation 424
 12.2.6.1 Mapping onto Equivalent Pore Networks 425
 12.2.6.2 Numerical Simulation of the Reynolds Equation 426
 12.2.6.3 Numerical Simulations with a Three-Dimensional Fracture 426
 12.2.6.4 Lattice-Gas and Lattice-Boltzmann Simulations 427
12.3 Conduction in a Fracture 429
 12.3.1 The Reynolds Approximation 430
 12.3.2 Perturbation Expansion 430
 12.3.3 Asymptotic Expression 431
 12.3.4 Random Walk Simulation 431
 12.4 Dispersion in a Fracture 435
 12.4.1 Experimental Aspects 435
 12.4.2 Asymptotic Analysis 438
 12.4.3 Direct Numerical Simulation 440
 12.4.4 Lattice-Boltzmann Simulation 441
 12.5 Flow and Conduction in Fracture Networks 441
 12.5.1 Numerical Simulations 444
 12.5.2 Effective-Medium Approximation 444
 12.6 Dispersion in Fracture Networks 447
 12.7 Flow and Transport in Fractured Porous Media 450
 12.7.1 The Double- and Triple-Porosity Models 450
 12.7.2 Network Models: Exact Formulation and Perturbation Expansion 455
 12.7.2.1 Effective-Medium Approximation for Conductance Disorder 460
 12.7.2.2 Effective-Medium Approximation for Exchange Disorder 461
13 Miscible Displacements 467
 13.1 Factors Affecting the Efficiency of Miscible Displacements 469
 13.1.1 Mobility and Mobility Ratio 469
 13.1.2 Diffusion and Dispersion 470
 13.1.3 Anisotropy of Porous Media 473
 13.2 The Phenomenon of Fingering 473
 13.3 Factors Affecting Fingering 476
 13.3.1 Displacement Rate 476
 13.3.2 Heterogeneity Characteristics 476
 13.3.3 Viscosity Ratio 478
 13.3.4 Dispersion 478
 13.3.5 Aspect Ratio and Boundary Conditions 478
 13.4 Gravity Segregation 480
 13.5 Models of Miscible Displacements in Hele-Shaw Cells 481
 13.6 Averaged Continuum Models of Miscible Displacements 487
 13.6.1 The Koval Model 488
 13.6.2 The Todd–Longstaff Model 490
 13.7 Numerical Simulation 492
 13.7.1 Finite-Element Methods 492
 13.7.2 Finite-Difference Methods 493
Contents

13.7.3 Streamline Method 493
13.7.4 Spectral Methods 494
13.8 Stability Analysis 495
13.9 Stochastic Models 500
13.9.1 Diffusion-Limited Aggregation 500
13.9.2 The Dielectric Breakdown Model 503
13.9.3 The Gradient-Governed Growth Model 504
13.9.4 The Two-Walkers Model 505
13.9.5 Stochastic Models with Dispersion Included 506
13.10 Pore Network Models 509
13.11 Crossover from Fractal to Compact Displacement 511
13.12 Miscible Displacements in Large-Scale Porous Media 512
13.13 Miscible Displacements in Fractures 514
13.14 Main Considerations in Miscible Displacements 515
13.14.1 Reservoir Characterization and Management 515
13.14.2 Mobility Control 516
13.14.3 Miscible Water-Alternating-Gas Process 516
13.14.4 Relative Permeabilities 517
13.14.5 Upscaling 518

14 Immiscible Displacements and Multiphase Flows:
Experimental Aspects and Continuum Modeling 519
14.1 Wettability and Contact Angles 519
14.2 Core Preparation and Wettability Considerations 521
14.3 Measurement of Contact Angle and Wettability 524
14.3.1 The Sessile Drop Method 524
14.3.2 The Amott Method 526
14.3.3 US Bureau of Mines Method 526
14.4 The Effect of Surface Roughness on Contact Angle 527
14.5 Dependence of Dynamic Contact Angle and Capillary Pressure on Capillary Number 527
14.6 Fluids on Rough Self-Affine Surfaces: Hypodiffusion and Hyperdiffusion 529
14.7 Effect of Wettability on Capillary Pressure 531
14.8 Immiscible Displacement Processes 535
14.8.1 Spontaneous Imbibition 536
14.8.2 Quasi-Static Imbibition 537
14.8.3 Imbibition at Constant Flow Rates 538
14.8.4 Dynamic Invasion at Constant Flow Rates 538
14.8.5 Trapping of Blobs 539
14.9 Mobilization of Blobs: Choke-Off and Pinch-Off 540
14.10 Relative Permeability 543
14.11 Measurement of Relative Permeabilities 544
14.11.1 The Hassler Method 545
14.11.2 The Penn-State Method 545
Contents

14.11.3 The Richardson–Perkins Method 545
14.11.4 Unsteady-State Methods 546
14.11.5 Relative Permeabilities from Capillary Pressure Data 549
14.11.6 Relative Permeability from Centrifuge Data 551
14.11.7 Simultaneous Estimation of Relative Permeability and Capillary Pressure 551
14.12 Effect of Wettability on Relative Permeability 552
14.13 Models of Multiphase Flow and Displacement 553
14.14 Fractional Flows and the Buckley–Leverett Equation 554
14.15 The Hilfer Formulation: Questioning the Macroscopic Capillary Pressure 556
14.16 Two-Phase Flow in Unconsolidated Porous Media 557
14.16.1 Countercurrent Flows 558
14.16.2 Cocurrent Downflows 559
14.16.3 Cocurrent Upflows 561
14.17 Continuum Models of Two-Phase Flows in Unconsolidated Porous Media 561
14.18 Stability Analysis of Immiscible Displacements 563
14.19 Two-Phase Flow in Large-Scale Porous Media 568
14.19.1 Large-Scale Averaging 569
14.19.2 Reservoir Simulation 571
14.20 Two-Phase Flow in Fractured Porous Media 572

15 Immiscible Displacements and Multiphase Flows: Network Models 575
15.1 Pore Network Models of Capillary-Controlled Two-Phase Flow 575
15.1.1 Random-Percollation Models 576
15.1.2 Random Site-Correlated Bond Percolation Models 579
15.1.3 Invasion Percolation 579
15.1.4 Efficient Simulation of Invasion Percolation 582
15.1.5 The Structure of Invasion Clusters 583
15.2 Simulating the Flow of Thin Wetting Films 585
15.3 Displacements with Two Invaders and Two Defenders 588
15.4 Random Percolation with Trapping 593
15.5 Crossover from Fractal to Compact Displacement 593
15.6 Pinning of a Fluid Interface 596
15.7 Finite-Size Effects and Devil’s Staircase 598
15.8 Displacement under the Influence of Gravity: Gradient Percolation 599
15.9 Computation of Relative Permeabilities 601
15.9.1 Construction of the Pore Network 601
15.9.2 Pore Size and Shape 602
15.9.3 Quasi-Static and Dynamic Pore Network Models 603
15.10 Models of Immiscible Displacements with Finite Capillary Numbers 608
15.11 Phase Diagram for Displacement Processes 613
15.12 Dispersion in Two-Phase Flow in Porous Media 614
15.13 Models of Two-Phase Flow in Unconsolidated Porous Media 617
15.14 Three-Phase Flow 620
15.14.1 Measurement of Three-Phase Relative Permeabilities 620
15.14.2 Pore-Scale Physics of Three-Phase Flow 621
15.14.3 Pore Network Models 623
15.14.4 Simulation of Three-Phase Flow 626
15.15 Two-Phase Flow in Fractures and Fractured Porous Media 631

References 633

Index 701