Dictyostelium

Evolution, Cell Biology, and the Development of Multicellularity

RICHARD H. KESSIN
Columbia University

Bibliography by Jakob Franke
Columbia University

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface xii

1 A Brief Introduction to *Dictyostelium discoideum* and its Relatives 1

2 A History of Research on *Dictyostelium discoideum* 9
 2.1 The classical experiments of Kenneth Raper 12
 2.2 Chemotaxis and aggregation 16
 2.3 Biochemistry and molecular biology 18

3 The Evolutionary Biology of *Dictyostelium* 20
 3.1 A digression into ecology 20
 3.2 Soil amoebae have predators 21
 3.3 The amoebae can respond to starvation in three ways 22
 3.3.1 The microcyst 25
 3.3.2 The macrocyst 25
 3.3.3 Fruiting bodies 27
 3.4 The forms of development evolved in a sequence 27
 3.5 Genetic heterogeneity in wild populations 28
 3.6 The evolution of cooperativity 29
 3.7 The cells in a *Dictyostelium* aggregate compete to form spores 30
 3.8 Size limitations in an aggregative organism 33
 3.9 The extraordinary parasitism of *D. caveatum* 33
 3.10 Molecular phylogeny 35

vii
4 The Genome and Genetics

4.1 The genome is relatively small and will be sequenced soon

4.2 The ribosomal genes are coded in an extra-chromosomal palindrome

4.3 Dictyostelium species contain several families of replicating plasmids

4.4 The genome is littered with transposable elements

4.4.1 Tdd-2 and Tdd-3

4.4.2 DIRS-1

4.4.3 DRE

4.4.4 Skipper

4.5 The mitochondrial genome

4.6 Maintaining the genome – the DNA repair mechanisms of Dictyostelium

4.7 Molecular genetics

4.8 Mutagenesis

4.9 Restriction enzyme-mediated integration

4.10 Parasexual and sexual genetic manipulations

4.10.1 Parasexual genetics

4.10.2 Sexual recombination

5 Membranes and Organelles of Dictyostelium

5.1 The plasma membrane

5.2 Channels and pumps of the plasma membrane

5.3 Membrane systems that transiently connect to the plasma membrane

5.4 Axenic cells feed by macropinocytosis

5.5 Phagocytosis

5.6 Lysosomes

5.7 Endoplasmic reticulum, Golgi, and nuclei

5.8 Mitochondria and peroxisomes

5.9 The autophagic vacuole

6 Cell Motility and the Cytoskeleton

6.1 Actin and its binding proteins

6.1.1 G-actin-binding proteins

6.1.2 F-actin-binding proteins

6.1.3 Cross-linking proteins

6.1.4 Attaching to the membrane

6.2 Myosin motors – conventional myosin

6.3 Myosin motors – the unconventional myosins

6.4 Building and retracting the pseudopod

6.5 Strengthening the filaments of actin

6.6 Moving the cell

6.7 Signaling to the cytoskeleton

6.8 Cytokinesis
6.9 The microtubule cytoskeleton

7 The Transition from Growth to Development: From Starvation to Self-Sustaining cAMP Signal Relay
7.1 Cells can detect imminent starvation
7.2 Growth-specific events cease during development
7.3 The first events after starvation
7.4 YakA kinase regulates the growth to development transition

8 Chemotaxis and Aggregation
8.1 An overview
8.2 There are several ways to study the cellular response to cAMP binding
8.3 Second messengers and cytoskeletal events can be studied with suspended cells
8.4 Components of the cAMP signal transduction and relay pathway
 8.4.1 The cAR1 receptor is essential to aggregation
 8.4.2 The cAR1 protein has several important domains
 8.4.3 cAR1 initiates G protein-dependent signal transduction pathways
 8.4.4 The βy subunit stimulates adenylyl cyclase (ACA) in conjunction with other proteins
 8.4.5 The signal transduction components beyond ACA
 8.4.6 RegA is an unusual phosphodiesterase (PDE) and affects the activity of cAMP-dependent protein kinase (PKA)
 8.4.7 The PKA is essential for gene induction and regulates events in the cytoplasm
8.5 The developmental regulation of chemotactic components
8.6 cGMP and calcium mobilize the cytoskeleton
8.7 cGMP controls motility during chemotaxis
8.8 The amoebae control extracellular cAMP by secreting a PDE and a PDE inhibitor (PDI)
8.9 The cells can sense density and aggregate size
8.10 Auto-induction of the chemotactic response
8.11 Mobilizing the chemotactic machinery
8.12 Polarity of movement and the polarity of G-protein activation
8.13 Mathematical simulations to explain signaling in Dictyostelium

9 Differentiation and Adhesion in the Aggregate
9.1 Amoebae form a sheath during aggregation
9.2 The transition from aggregation to loose mound is mediated by a transcription factor named GBF
CONTENTS

9.3 The discovery of cell type-specific genes provided important tools to study pattern formation 143
9.4 Pattern formation begins in the mound 144
9.5 The position of PstA, PstO, and PstAB cells 146
9.6 Differentiation inducing factor (DIF) and the origin of prestalk cells 147
9.7 Are any prestalk genes expressed without DIF? 151
9.8 The history of a cell affects its fate 152
9.9 How are the constant ratios of prestalk and prespore cells to be explained? 154
9.10 What is the basis of cell sorting? 156
9.11 Overexpression of PKA can compensate for a lack of cAMP 158
9.12 The cells induce several adhesion systems during formation of the mound 158
9.12.1 Gp24 159
9.12.2 Gp80 159
9.12.3 Gp64 162
9.13 Substrate adhesion 162
9.14 The genetic complexity of mound formation 163

10 The Behavior of Cells in the Slug 166
10.1 The tight aggregate elongates under control of the tip 166
10.2 Tips inhibit the formation of other tips 167
10.3 Slugs move toward light and heat 171
10.4 The unanticipated complexity of cells in the slug 173
10.4.1 The prestalk region in the slug can be subdivided 174
10.4.2 Cellular traffic and cell-type conversion during slug migration 177
10.4.3 How do prespore segments restore their severed prestalk tips? 177
10.5 How do the cells in the slug move? 178
10.6 Gene regulation within the prestalk and prespore zones 180
10.6.1 The ecmA and ecmB promoters are highly regulated 181
10.6.2 Dd-STATa binds to the ecmB promoter inhibitory sequences 182
10.6.3 Regulation of ecmA 183
10.6.4 The prespore gene promoters 184
10.7 Slugger mutants maintain their repression of culmination 185
10.8 The stability of the differentiated slug cells 186

11 Culmination 188
11.1 Deciding when migration has gone on long enough 188
11.2 Early steps in culmination 189
11.3 Movements at the Mexican hat stage 192
11.4 The anatomic details of a culminant 193
11.5 Cellulose synthesis and the formation of stalk 197
11.6 Death comes to the stalk cells 198
11.7 Participation of the prespore cells in culmination 199
11.8 The final step in spore formation is regulated exocytosis 199
11.9 The coordination of spore and stalk formation 201
11.10 Small peptides and the timing of encapsulation 204
11.11 Genetic experiments suggest the source of the inducer of spore encapsulation 205
11.12 Ligands for two-component sensors 206
11.13 The targets of PKA 208
11.14 Culmination-defective mutants 208

12 Formation and Germination of Spores 210
12.1 The spore coat has a complex architecture 210
12.2 The proteins of the spore coat 211
12.3 The synthesis of cellulose in spores 215
12.4 The formation of the spore entails changes in the cytoplasm 216
12.5 Sorocarps contain inhibitors of germination 216
12.6 Amoebae emerge with caution 218
12.7 The program of spore germination 219

13 Resources 223
13.1 Books 223
13.2 Articles for the non-scientist 224
13.3 Films and videos 225
13.4 The Franke bibliographic database 225
13.5 Websites 225

References 227

Index 285